Publications by authors named "Roman Garnett"

Active learning is a valuable tool for efficiently exploring complex spaces, finding a variety of uses in materials science. However, the determination of convex hulls for phase diagrams does not neatly fit into traditional active learning approaches due to their global nature. Specifically, the thermodynamic stability of a material is not simply a function of its own energy, but rather requires energetic information from all other competing compositions and phases.

View Article and Find Full Text PDF

The visual analytics community has proposed several user modeling algorithms to capture and analyze users' interaction behavior in order to assist users in data exploration and insight generation. For example, some can detect exploration biases while others can predict data points that the user will interact with before that interaction occurs. Researchers believe this collection of algorithms can help create more intelligent visual analytics tools.

View Article and Find Full Text PDF

Photoswitches are molecules that undergo a reversible, structural isomerization after exposure to certain wavelengths of light. The dynamic control offered by molecular photoswitches is favorable for materials chemistry, photopharmacology, and catalysis applications. Ideal photoswitches absorb visible light and have long-lived metastable isomers.

View Article and Find Full Text PDF

Multi- and hyperspectral imaging modalities encompass a growing number of spectral techniques that find many applications in geospatial, biomedical, machine vision and other fields. The rapidly increasing number of applications requires convenient easy-to-navigate software that can be used by new and experienced users to analyse data, and develop, apply and deploy novel algorithms. Herein, we present our platform, IDCube Lite, an Interactive Discovery Cube that performs essential operations in hyperspectral data analysis to realise the full potential of spectral imaging.

View Article and Find Full Text PDF

Identifying people with Parkinson disease during the prodromal period, including via algorithms in administrative claims data, is an important research and clinical priority. We sought to improve upon an existing penalized logistic regression model, based on diagnosis and procedure codes, by adding prescription medication data or using machine learning. Using Medicare Part D beneficiaries age 66-90 from a population-based case-control study of incident Parkinson disease, we fit a penalized logistic regression both with and without Part D data.

View Article and Find Full Text PDF

Analyzing interaction data provides an opportunity to learn about users, uncover their underlying goals, and create intelligent visualization systems. The first step for intelligent response in visualizations is to enable computers to infer user goals and strategies through observing their interactions with a system. Researchers have proposed multiple techniques to model users, however, their frameworks often depend on the visualization design, interaction space, and dataset.

View Article and Find Full Text PDF

Protein domain interactions with short linear peptides, such as those of the Src homology 2 (SH2) domain with phosphotyrosine-containing peptide motifs (pTyr), are ubiquitous and important to many biochemical processes of the cell. The desire to map and quantify these interactions has resulted in the development of high-throughput (HTP) quantitative measurement techniques, such as microarray or fluorescence polarization assays. For example, in the last 15 years, experiments have progressed from measuring single interactions to covering 500,000 of the 5.

View Article and Find Full Text PDF

Behavioral testing in perceptual or cognitive domains requires querying a subject multiple times in order to quantify his or her ability in the corresponding domain. These queries must be conducted sequentially, and any additional testing domains are also typically tested sequentially, such as with distinct tests comprising a test battery. As a result, existing behavioral tests are often lengthy and do not offer comprehensive evaluation.

View Article and Find Full Text PDF

With its never-ending blue color, the underwater environment often seems monotonic and featureless. However, to an animal with polarization-sensitive vision, it is anything but bland. The rich repertoire of underwater polarization patterns-a consequence of light's air-to-water transmission and in-water scattering-can be exploited both as a compass and for geolocalization purposes.

View Article and Find Full Text PDF

We consider lead discovery as active search in a space of labelled graphs. In particular, we extend our recent data-driven adaptive Markov chain approach, and evaluate it on a focused drug design problem, where we search for an antagonist of an αv integrin, the target protein that belongs to a group of Arg-Gly-Asp integrin receptors. This group of integrin receptors is thought to play a key role in idiopathic pulmonary fibrosis, a chronic lung disease of significant pharmaceutical interest.

View Article and Find Full Text PDF

Conventional psychometric function (PF) estimation involves fitting a parametric, unidimensional sigmoid to binary subject responses, which is not readily extendible to higher order PFs. This study presents a nonparametric, Bayesian, multidimensional PF estimator that also relies upon traditional binary subject responses. This technique is built upon probabilistic classification (PC), which attempts to ascertain the subdomains corresponding to each subject response as a function of multiple independent variables.

View Article and Find Full Text PDF

We identify a unique viewpoint on the collective behaviour of intelligent agents. We first develop a highly general abstract model for the possible future lives these agents may encounter as a result of their decisions. In the context of these possibilities, we show that the causal entropic principle, whereby agents follow behavioural rules that maximize their entropy over all paths through the future, predicts many of the observed features of social interactions among both human and animal groups.

View Article and Find Full Text PDF

A method is introduced for sequential similarity searching for active compounds. Given a set of known actives and a screening database, a strategy is devised to optimally rank test compounds by observing the outcome of each iteration before selecting the next compound. This 'active search' approach is based upon Bayesian decision theory.

View Article and Find Full Text PDF

Inference of interaction rules of animals moving in groups usually relies on an analysis of large scale system behaviour. Models are tuned through repeated simulation until they match the observed behaviour. More recent work has used the fine scale motions of animals to validate and fit the rules of interaction of animals in groups.

View Article and Find Full Text PDF

Inference of interaction rules of animals moving in groups usually relies on an analysis of large scale system behaviour. Models are tuned through repeated simulation until they match the observed behaviour. More recent work has used the fine scale motions of animals to validate and fit the rules of interaction of animals in groups.

View Article and Find Full Text PDF

Pigeons home along idiosyncratic habitual routes from familiar locations. It has been suggested that memorized visual landmarks underpin this route learning. However, the inability to experimentally alter the landscape on large scales has hindered the discovery of the particular features to which birds attend.

View Article and Find Full Text PDF

We introduce a local image statistic for identifying noise pixels in images corrupted with impulse noise of random values. The statistical values quantify how different in intensity the particular pixels are from their most similar neighbors. We continue to demonstrate how this statistic may be incorporated into a filter designed to remove additive Gaussian noise.

View Article and Find Full Text PDF