Publications by authors named "Roman G Kuperman"

Individual effects of nitrogen-based energetic materials (EMs) 2,4-dinitrotoluene (2,4-DNT), 2-amino-4,6-dinitrotoluene (2-ADNT), 4-amino-2,6-dinitrotoluene (4-ADNT), nitroglycerin (NG), and 2,4,6,8,10,12-hexanitrohexaazaisowurtzitane (CL-20) on litter decomposition, an essential biologically-mediated soil process, were assessed using Orchard grass (Dactylis glomerata) straw in Sassafras sandy loam (SSL) soil, which has physicochemical characteristics that support "very high" qualitative relative bioavailability for organic chemicals. Batches of SSL soil were separately amended with individual EMs or acetone carrier control. To quantify the decomposition rates, one straw cluster was harvested from a set of randomly selected replicate containers from within each treatment, after 1, 2, 3, 4, 6, and 8 months of exposure.

View Article and Find Full Text PDF

We investigated the toxicity of selenium (Se) to the soil invertebrates Folsomia candida (Collembola) and Enchytraeus crypticus (potworm). Studies were designed to generate ecotoxicological benchmarks for developing ecological soil screening levels (Eco-SSLs) for risk assessments of contaminated soils. For the present studies, we selected Sassafras sandy loam, an aerobic upland soil with soil characteristics (low levels of clay and organic matter, soil pH adjusted from 5.

View Article and Find Full Text PDF

We investigated individual toxicities of the nitrogen-based energetic materials (EMs) 2,4-dinitrotoluene (2,4-DNT); 2-amino-4,6-dinitrotoluene (2-ADNT); 4-amino-2,6-dinitrotoluene (4-ADNT); and nitroglycerin (NG) on microbial activity in Sassafras sandy loam (SSL) soil, which has physicochemical characteristics that support very high qualitative relative bioavailability for organic chemicals. Batches of SSL soil for basal respiration (BR) and substrate-induced respiration (SIR) assays were separately amended with individual EMs or acetone carrier control. Total microbial biomass carbon (biomass C) was determined from CO production increases after addition of 2500 mg/kg of glucose-water slurry to the soil.

View Article and Find Full Text PDF

Although it is widely recognized that microorganisms are essential for sustaining soil fertility, structure, nutrient cycling, groundwater purification, and other soil functions, soil microbial toxicity data were excluded from the derivation of Ecological Soil Screening Levels (Eco-SSL) in the United States. Among the reasons for such exclusion were claims that microbial toxicity tests were too difficult to interpret because of the high variability of microbial responses, uncertainty regarding the relevance of the various endpoints, and functional redundancy. Since the release of the first draft of the Eco-SSL Guidance document by the US Environmental Protection Agency in 2003, soil microbial toxicity testing and its use in ecological risk assessments have substantially improved.

View Article and Find Full Text PDF

The authors investigated individual toxicities of 2,4,6-trinitrotoluene (TNT) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) to the potworm Enchytraeus crypticus using the enchytraeid reproduction test. Studies were designed to generate ecotoxicological benchmarks that can be used for developing ecological soil-screening levels for ecological risk assessments of contaminated soils and to identify and characterize the predominant soil physicochemical parameters that can affect the toxicities of TNT and RDX to E. crypticus.

View Article and Find Full Text PDF

Nitroglycerin (NG) is widely used for the production of explosives and solid propellants, and is a soil contaminant of concern at some military training ranges. NG phytotoxicity data reported in the literature cannot be applied directly to development of ecotoxicological benchmarks for plant exposures in soil because they were determined in studies using hydroponic media, cell cultures, and transgenic plants. Toxicities of NG in the present studies were evaluated for alfalfa (Medicago sativa), barnyard grass (Echinochloa crusgalli), and ryegrass (Lolium perenne) exposed to NG in Sassafras sandy loam soil.

View Article and Find Full Text PDF

The uptake of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) from soil by the earthworm Eisenia andrei was examined by using the equilibrium partitioning (EqP) theory and a three-compartment model including soil (S), interstitial water (IW), and earthworms (E). The RDX concentrations were measured using U.S.

View Article and Find Full Text PDF

The presence of energetic materials (used as explosives and propellants) at contaminated sites is a growing international issue, particularly with respect to military base closures and demilitarization policies. Improved understanding of the ecotoxicological effects of these materials is needed in order to accurately assess the potential exposure risks and impacts on the environment and its ecosystems. We studied the toxicity of the nitroaromatic energetic material 2,4-dinitrotoluene (2,4-DNT) on alfalfa (Medicago sativa L.

View Article and Find Full Text PDF

The heterocyclic polynitramine hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is a highly energetic compound found as a soil contaminant at some defense installations. Although RDX is not lethal to soil invertebrates at concentrations up to 10,000 mg/kg, it decreases earthworm cocoon formation and juvenile production at environmentally relevant concentrations found at contaminated sites. Very little is known about the uptake of RDX in earthworms and the potential risks for food-chain transfer of RDX in the environment.

View Article and Find Full Text PDF

Hexanitrohexaazaisowurtzitane (CL-20) is an emerging explosive that may replace the currently used explosives such as RDX and HMX, but little is known about its fate in soil. The present study was conducted to determine degradation products of CL-20 in two sandy soils under abiotic and biotic anaerobic conditions. Biotic degradation was prevalent in the slightly acidic VT soil, which contained a greater organic C content, while the slightly alkaline SAC soil favored hydrolysis.

View Article and Find Full Text PDF

Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), and 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) are cyclic nitramines used as explosives. Their ecotoxicities have been characterized incompletely and little is known about their accumulation potential in soil organisms. We assessed the toxicity and uptake of these explosives in perennial ryegrass Lolium perenne L.

View Article and Find Full Text PDF

Scientifically based ecological soil-screening levels are needed to identify concentrations of contaminant energetic materials (EMs) in soil that present an acceptable ecological risk at a wide range of military installations. Insufficient information regarding the toxicity of 2,4-dinitrotoluene (2,4-DNT), 2,6-dinitrotoluene (2,6-DNT), and 1,3,5-trinitrobenzene (TNB) to soil invertebrates necessitated toxicity testing. We adapted the standardized Enchytraeid Reproduction Test (International Standardization Organization 16387:2003) and selected Enchytraeus crypticus for these studies.

View Article and Find Full Text PDF

The U.S. Environmental Protection Agency is developing ecological soil screening levels (Eco-SSLs) for the ecological risk assessment of contaminants at Superfund sites.

View Article and Find Full Text PDF

Hexanitrohexaazaisowurtzitane (CL-20), a new polycyclic polynitramine, has the same functional nitramine groups (N-NO2) as the widely used energetic chemicals hexahydro-1,3,5-trinitro-1,3,5-triazacyclohexane (royal demolition explosive [RDX]) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (high-melting explosive [HMX]). Potential impacts of CL-20 as an emerging contaminant must be assessed before its use. The effects of CL-20, RDX, or HMX on adult survival and juvenile production by potworms Enchytraeus albidus and Enchytraeus crypticus were studied in three soil types, including Sassafras sandy loam (1.

View Article and Find Full Text PDF

Energetic materials are employed in a wide range of commercial and military activities and often are released into the environment. Scientifically based ecological soil-screening levels (Eco-SSLs) are needed to identify contaminant explosive levels in soil that present an acceptable ecological risk. Insufficient information for 2,4,6-trinitrotoluene (TNT) to generate Eco-SSLs for soil invertebrates necessitated toxicity testing.

View Article and Find Full Text PDF

We investigated the toxicity of an emerging polynitramine energetic material hexanitrohexaazaisowurtzitane (CL-20) to the soil invertebrate species Enchytraeus crypticus by adapting then using the Enchytraeid Reproduction Test (ISO/16387:2003). Studies were designed to develop ecotoxicological benchmark values for ecological risk assessment of the potential impacts of accidental release of this compound into the environment. Tests were conducted in Sassafras Sandy Loam soil, which supports relatively high bioavailability of CL-20.

View Article and Find Full Text PDF

The toxicities of 2,4,6-trinitrotoluene (TNT), 1,3,5-trinitrobenzene (TNB), 2,4-dinitrotoluene (2,4-DNT), and 2,6-dinitrotoluene (2,6-DNT) to terrestrial plants alfalfa (Medicago sativa L.), Japanese millet (Echinochloa crusgalli L.), and perennial ryegrass (Lolium perenne L.

View Article and Find Full Text PDF

The phytogenotoxicity of 2,4-dinitrotoluene (2,4-DNT) and 2,6-dinitrotoluene (2,6-DNT) was assessed using the Tradescantia micronucleus (Trad-MCN) bioassay. Tradescantia cuttings bearing young inflorescences were exposed for 6h to 2,4- or 2,6-DNT amended water solutions up to their respective solubilities. The nominal concentrations were 0, 1.

View Article and Find Full Text PDF