Enveloped viruses, such as flaviviruses and coronaviruses, are pathogens of significant medical concern that cause severe infections in humans. Some photosensitizers are known to possess virucidal activity against enveloped viruses, targeting their lipid bilayer. Here we report a series of halogenated difluoroboron-dipyrromethene (BODIPYs) photosensitizers with strong virus-inactivating activity.
View Article and Find Full Text PDFNon-immunoglobulin-based scaffold proteins (SPs) represent one of the key therapeutic target-specific and high-affinity binders in modern medicine. Among their cellular targets are signaling receptors, in particular, receptor tyrosine kinases, whose dysfunction leads to the development of cancer and other serious diseases. Successful applications of SPs have been reported for HER receptor type 2 (HER2), a member of the human epidermal growth factor receptor family that regulates cell growth and differentiation.
View Article and Find Full Text PDFTRPV6 is a Ca selective channel that mediates calcium uptake in the gut and contributes to the development and progression of human cancers. TRPV6 is represented by the ancestral and derived haplotypes that differ by three non-synonymous polymorphisms, located in the N-terminal ankyrin repeat domain (C157R), S1-S2 extracellular loop (M378V), and C-terminus (M681T). The ancestral and derived haplotypes were proposed to serve as genomic factors causing a different outcome for cancer patients of African ancestry.
View Article and Find Full Text PDFLateral heterogeneity, or mosaicity, is a fundamental property inherent to cell membranes that is crucial for their functioning. While microscopic inhomogeneities (e.g.
View Article and Find Full Text PDFT cell receptor (TCR) recognition of foreign peptides presented by major histocompatibility complex protein is a major event in triggering the adaptive immune response to pathogens or cancer. The prediction of TCR-peptide interactions has great importance for therapy of cancer as well as infectious and autoimmune diseases but remains a major challenge, particularly for novel (unseen) peptide epitopes. Here we present TCRen, a structure-based method for ranking candidate unseen epitopes for a given TCR.
View Article and Find Full Text PDFStructural biology is solving an ever-increasing number of snapshots of ion channel conformational ensembles. Deciphering ion channel mechanisms, however, requires understanding the ensemble dynamics beyond the static structures. Here, we present a molecular modeling-based approach characterizing the ion channel structural intermediates, or their "dynamic molecular portraits", by assessing water and ion conductivity along with the detailed evaluation of pore hydrophobicity and residue packing.
View Article and Find Full Text PDFThe emergence of multidrug-resistant (MDR) strains causes severe problems in the treatment of microbial infections owing to limited treatment options. Antimicrobial peptides (AMPs) are drawing considerable attention as promising antibiotic alternative candidates to combat MDR bacterial and fungal infections. Herein, we present a series of small amphiphilic membrane-active cyclic peptides composed, in part, of various nongenetically encoded hydrophilic and hydrophobic amino acids.
View Article and Find Full Text PDFIn our ongoing quest to design effective antimicrobial peptides (AMPs), this study aimed to elucidate the mechanisms governing cyclic amphiphilic AMPs and their interactions with membranes. The objective was to discern the nature of these interactions and understand how peptide sequence and structure influence antimicrobial activity. We introduced modifications into the established cyclic AMP peptide, [WR], incorporating an extra aromatic hydrophobic residue (W), a positively charged residue (R), or the unique 2,5-diketopiperazine (DKP).
View Article and Find Full Text PDFAmphipathic perylene derivatives are broad-spectrum antivirals against enveloped viruses that act as fusion inhibitors in a light-dependent manner. The compounds target the lipid bilayer of the viral envelope using the lipophilic perylene moiety and photogenerating singlet oxygen, thereby causing damage to unsaturated lipids. Previous studies show that variation of the polar part of the molecule is important for antiviral activity.
View Article and Find Full Text PDFInt J Mol Sci
November 2023
Membrane-spanning portions of proteins' polypeptide chains are commonly known as their transmembrane domains (TMDs). The structural organisation and dynamic behaviour of TMDs from proteins of various families, be that receptors, ion channels, enzymes etc., have been under scrutiny on the part of the scientific community for the last few decades.
View Article and Find Full Text PDFRoughly 1% of the global population is susceptible to celiac disease (CD)-inheritable autoimmune inflammation of the small intestine caused by intolerance to gliadin proteins present in wheat, rye, and barley grains, and called gluten in wheat. Classical treatment is a life-long gluten-free diet, which is constraining and costly. An alternative approach is based upon the development and oral reception of effective peptidases that degrade in the stomach immunogenic proline- and glutamine-rich gliadin peptides, which are the cause of the severe reaction in the intestine.
View Article and Find Full Text PDFThe calcium-selective oncochannel TRPV6 is an important driver of cell proliferation in human cancers. Despite increasing interest of pharmacological research in developing synthetic inhibitors of TRPV6, natural compounds acting at this channel have been largely neglected. On the other hand, pharmacokinetics of natural small-molecule antagonists optimized by nature throughout evolution endows these compounds with a medicinal potential to serve as potent and safe next-generation anti-cancer drugs.
View Article and Find Full Text PDFNon-membrane-bound biomolecular condensates have been proposed to represent an important mode of subcellular organization in diverse biological settings. However, the fundamental principles governing the spatial organization and dynamics of condensates at the atomistic level remain unclear. The Lge1 protein is required for histone H2B ubiquitination and its N-terminal intrinsically disordered fragment (Lge1) undergoes robust phase separation.
View Article and Find Full Text PDFComput Struct Biotechnol J
April 2023
Constitutive activation of receptor tyrosine kinases (RTKs) via different mutations has a strong impact on the development of severe human disorders, including cancer. Here we propose a putative activation scenario of RTKs, whereby transmembrane (TM) mutations can also promote higher-order oligomerization of the receptors that leads to the subsequent ligand-free activation. We illustrate this scenario using a computational modelling framework comprising sequence-based structure prediction and all-atom 1 µs molecular dynamics (MD) simulations in a lipid membrane for a previously characterised oncogenic TM mutation V536E in platelet-derived growth factor receptor alpha (PDGFRA).
View Article and Find Full Text PDFCalcium-selective oncochannel TRPV6 is the major driver of cell proliferation in human cancers. While significant effort has been invested in the development of synthetic TRPV6 inhibitors, natural channel blockers have been largely neglected. Here we report the structure of human TRPV6 in complex with the plant-derived phytoestrogen genistein, extracted from Styphnolobium japonicum, that was shown to inhibit cell invasion and metastasis in cancer clinical trials.
View Article and Find Full Text PDFHuman InsR, IGF1R, and IRR receptor tyrosine kinases (RTK) of the insulin receptor subfamily play an important role in signaling pathways for a wide range of physiological processes and are directly associated with many pathologies, including neurodegenerative diseases. The disulfide-linked dimeric structure of these receptors is unique among RTKs. Sharing high sequence and structure homology, the receptors differ dramatically in their localization, expression, and functions.
View Article and Find Full Text PDFTo date, a number of lantibiotics have been shown to use lipid II-a highly conserved peptidoglycan precursor in the cytoplasmic membrane of bacteria-as their molecular target. The α-component (Lchα) of the two-component lantibiotic lichenicidin, previously isolated from the VK21 strain, seems to contain two putative lipid II binding sites in its -terminal and -terminal domains. Using NMR spectroscopy in DPC micelles, we obtained convincing evidence that the -terminal mersacidin-like site is involved in the interaction with lipid II.
View Article and Find Full Text PDFA series of small (7-12 mer) amphipathic cationic peptides were designed and synthesized to create short helical peptides with broad-range bactericidal activity and selectivity toward the bacterial cells. The analysis identified a lead 12-mer peptide with broad-spectrum activity against Gram-positive (MIC = 3.1-6.
View Article and Find Full Text PDFS-acylation is a post-translational linkage of long chain fatty acids to cysteines, playing a key role in normal physiology and disease. In human cells, the reaction is catalyzed by a family of 23 membrane DHHC-acyltransferases (carrying an Asp-His-His-Cys catalytic motif) in two stages: (1) acyl-CoA-mediated autoacylation of the enzyme; and (2) further transfer of the acyl chain to a protein substrate. Despite the availability of a 3D-structure of human acyltransferase (hDHHC20), the molecular aspects of lipid selectivity of DHHC-acyltransferases remain unclear.
View Article and Find Full Text PDFAmong voltage-gated potassium channel (K) isoforms, K1.6 is one of the most widespread in the nervous system. However, there are little data concerning its physiological significance, in part due to the scarcity of specific ligands.
View Article and Find Full Text PDFUnderstanding fusion mechanisms employed by SARS-CoV-2 spike protein entails realistic transmembrane domain (TMD) models, while no reliable approaches towards predicting the 3D structure of transmembrane (TM) trimers exist. Here, we propose a comprehensive computational framework to model the spike TMD only based on its primary structure. We performed amino acid sequence pattern matching and compared the molecular hydrophobicity potential (MHP) distribution on the helix surface against TM homotrimers with known 3D structures and selected an appropriate template for homology modeling.
View Article and Find Full Text PDF"Fluorescence-Activating and absorption-Shifting Tag" (FAST) is a well-studied fluorogen-activating protein with high brightness and low size, able to activate a wide range of fluorogens. This makes FAST a promising target for both protein and fluorogen optimization. Here, we describe the structure-based rational design of the enhanced FAST mutants, optimized for the N871b fluorogen.
View Article and Find Full Text PDFCobra cytotoxins (CTs) belong to the three-fingered protein family and possess membrane activity. Here, we studied cytotoxin 13 from cobra venom (CT13Nn). For the first time, a spatial model of CT13Nn with both "water" and "membrane" conformations of the central loop (loop-2) were determined by X-ray crystallography.
View Article and Find Full Text PDFWe report the synthesis and antibacterial activities of a series of amphiphilic membrane-active peptides composed, in part, of various nongenetically coded hydrophobic amino acids. The lead cyclic peptides, and , showed broad-spectrum activity against drug-resistant Gram-positive (minimum inhibitory concentration (MIC) = 1.5-6.
View Article and Find Full Text PDFAlzheimer's disease (AD) is a severe neurodegenerative pathology with no effective treatment known. Toxic amyloid-β peptide (Aβ) oligomers play a crucial role in AD pathogenesis. AlldEnantiomeric peptide D3 and its derivatives were developed to disassemble and destroy cytotoxic Aβ aggregates.
View Article and Find Full Text PDF