Publications by authors named "Roman Forker"

Weakly interacting systems such as organic molecules on monolayers of hexagonal boron nitride (h-BN) offer the possibility of single integer charge transfer leading to the formation of organic ions. Such open-shell systems exhibit unique optical and electronic properties which differ from their neutral counterparts. In this study, we used a joint experimental and theoretical approach to investigate the charge transfer of perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) molecules on h-BN/Ni(111) by using differential reflectance spectroscopy (DRS), scanning tunneling spectroscopy (STS), and photoelectron orbital tomography (POT) measurements in combination with density functional theory (DFT) calculations.

View Article and Find Full Text PDF

The π-conjugation of organic molecules can be strongly influenced when functional groups are added to a molecule, for example when pentacene is converted into pentacene-5,7,12,14-tetrone (P4O) by substitution of four H-atoms with four O-atoms, leading to four CO double bonds. In fact, although free P4O resembles the parent hydrocarbon pentacene structurally at a first glance, its electronic properties differ drastically and can be more accurately described by three benzene units connected four carbonyl groups. If P4O is deposited onto Cu(111), the electronic interaction across the interface has previously been reported to fully restore the π-conjugation through a weakening of the CO double bonds and a redistribution of electrons, both of which have been explained with the model of surface-induced aromatic stabilization.

View Article and Find Full Text PDF

The exceptional electronic and photonic properties of the monolayers of transition metal dichalcogenides including the spin-orbit splitting of the valence and conduction bands at the points of the Brillouin zone make them promising for novel applications in electronics, photonics and optoelectronics. Scalable growth of these materials and understanding of their interaction with the substrate is crucial for these applications. Here we report the growth of MoS and MoSe monolayers on Au(111) by chemical vapor deposition at ambient pressure as well as the analysis of their structural and electronic properties down to the atomic scale.

View Article and Find Full Text PDF

While the crystal structure of the polymorph phase can be studied in three dimensions conveniently by X-ray methods like grazing-incidence X-ray diffraction (GIXD), the first monolayer is only accessible by surface-sensitive methods that allow the determination of a two-dimensional lattice. Here, GIXD measurements with sample rotation are compared with distortion-corrected low-energy electron diffraction (LEED) experiments on conjugated molecules: 3,4;9,10-perylenetetracarboxylic dianhydride (PTCDA), 6,13-pentacenequinone (P2O), 1,2;8,9-dibenzopentacene (trans-DBPen) and dicyanovinyl-quaterthiophene (DCV4T-Et2) grown by physical vapor deposition on Ag(111) and Cu(111) single crystals. For these molecular crystals, which exhibit different crystallographic lattices and crystal orientations as well as epitaxial properties, the geometric parameters of the three-dimensional lattice are compared with the corresponding geometry of the first monolayer.

View Article and Find Full Text PDF

The epitaxial growth of molecular crystals at single-crystalline surfaces is often strongly related to the first monolayer at the substrate surface. The present work presents a theoretical approach to compare three-dimensional lattices of epitaxially grown crystals with two-dimensional lattices of the molecules formed within the first monolayer. Real-space and reciprocal-space representations are considered.

View Article and Find Full Text PDF

The fabrication of nanomaterials involves self-ordering processes of functional molecules on inorganic surfaces. To obtain specific molecular arrangements, a common strategy is to equip molecules with functional groups. However, focusing on the functional groups alone does not provide a comprehensive picture.

View Article and Find Full Text PDF

The formation of unknown polymorphs due to the crystallization at a substrate surface is frequently observed. This phenomenon is much less studied for epitaxially grown molecular crystals since the unambiguous proof of a new polymorph is a challenging task. The existence of multiple epitaxial alignments of the crystallites together with the simultaneous presence of different polymorphs does not allow simple phase identification.

View Article and Find Full Text PDF

2D materials such as hexagonal boron nitride (h-BN) are widely used to decouple organic molecules from metal substrates. Nevertheless, there are also indications in the literature for a significant hybridization, which results in a perturbation of the intrinsic molecular properties. In this work we study the electronic and optical properties as well as the lateral structure of tetraphenyldibenzoperiflanthene (DBP) on Ni(111) with and without an atomically thin h-BN interlayer to investigate its possible decoupling effect.

View Article and Find Full Text PDF

Interpreting experimental spectra of thin films of organic semiconductors is challenging, and understanding the relationship between experimental data obtained by different spectroscopic techniques requires a careful consideration of the initial and final states for each process. The discussion of spectroscopic data is frequently mired in confusion that originates in overlapping terminology with however distinct meaning in different spectroscopies. Here, we present a coherent framework that is capable of treating on equal footing most spectroscopies commonly used to investigate thin films of organic semiconductors.

View Article and Find Full Text PDF

In this contribution, we compare the optical absorbance behaviour and the structural properties of lead(II)-phthalocyanine (PbPc) and tin(II)-phthalocyanine (SnPc) thin films. To this end, we employ a Ag(1 1 1) substrate terminated with a monolayer of 3,4,9,10-perylene tetracarboxylic dianhydride constituting an internal interface whose main effect is an electronic decoupling of the phthalocyanine adlayer from the metal surface. As deduced from low-energy electron diffraction and scanning tunnelling microscopy (STM) measurements, the epitaxial relations and unit cell compositions of the prevailing PbPc monolayer and multilayer domains are confusingly similar to those of SnPc on PTCDA/Ag(1 1 1).

View Article and Find Full Text PDF

The current study generates profound atomistic insights into doping-induced changes of the optical and electronic properties of the prototypical PTCDA/Ag(111) interface. For doping K atoms are used, as KPTCDA/Ag(111) has the distinct advantage of forming well-defined stoichiometric phases. To arrive at a conclusive, unambiguous, and fully atomistic understanding of the interface properties, we combine state-of-the-art density-functional theory calculations with optical differential reflectance data, photoelectron spectra, and X-ray standing wave measurements.

View Article and Find Full Text PDF

Angle-resolved ultraviolet photoelectron spectroscopy (ARUPS) was measured for one-monolayer coronene films deposited on Ag(111). The ( , )-dependent photoelectron momentum maps (PMMs), which were extracted from the ARUPS data by cuts at fixed binding energies, show finely structured patterns for the highest and the second-highest occupied molecular orbitals. While the substructure of the PMM main features is related to the 4 × 4 commensurate film structure, various features with three-fold symmetry imply an additional influence of the substrate.

View Article and Find Full Text PDF

Early investigations of epitaxy focused on inorganic adsorbates consisting of atoms or few-atom molecules, where commensurate registries are predominantly encountered. Expanding such studies to larger (organic) molecules has revealed hitherto unknown types of epitaxy with coherence between adlayer and substrate lattices in just one direction. Here we review recent contributions to the fundamental understanding and modeling of epitaxy.

View Article and Find Full Text PDF

We study the molecular structure of one monolayer of picene on a Ag(100) surface. Low energy electron diffraction and scanning tunneling microscopy experiments show that the molecules arrange in a highly ordered manner exhibiting a point-on-line epitaxy with two differently arranged molecules per unit cell. Comparing measured and simulated photoelectron momentum maps allows further conclusions about the composition of the unit cell.

View Article and Find Full Text PDF

The epitaxy of many organic films on inorganic substrates can be classified within the framework of rigid lattices which helps to understand the origin of energy gain driving the epitaxy of the films. Yet, there are adsorbate-substrate combinations with distinct mutual orientations for which this classification fails and epitaxy cannot be explained within a rigid lattice concept. It has been proposed that tiny shifts in atomic positions away from ideal lattice points, so-called static distortion waves (SDWs), are responsible for the observed orientational epitaxy in such cases.

View Article and Find Full Text PDF

Tetraphenyldibenzoperiflanthene (DBP) is a promising candidate as a component of highly efficient organic photovoltaic cells and organic light-emitting diodes. The structural properties of thin films of this particular lander-type molecule on Ag(111) were investigated by complementary techniques. Highly ordered structures were obtained, and their mutual alignment was characterized by means of low-energy electron diffraction (LEED).

View Article and Find Full Text PDF

Alkali metal atoms are frequently used for simple yet efficient n-type doping of organic semiconductors and as an ingredient of the recently discovered polycyclic aromatic hydrocarbon superconductors. However, the incorporation of dopants from the gas phase into molecular crystal structures needs to be controlled and well understood in order to optimize the electronic properties (charge carrier density and mobility) of the target material. Here, we report that potassium intercalation into the pristine 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) monolayer domains on a Ag(111) substrate induces distinct stoichiometry-dependent structural reordering processes, resulting in highly ordered and large KxPTCDA domains.

View Article and Find Full Text PDF

Tetraphenyldibenzoperiflanthene (DBP) attracts interest as an organic electron donor for photovoltaic applications. In order to assist in the analysis of vibrational and optical spectra measured during the formation of thin films of DBP, we have studied the vibrational modes and the electronic states of this molecule. Information on the vibrational modes of the electronic ground state has been obtained by IR absorption spectroscopy of DBP grains embedded in polyethylene and CsI pellets and by calculations using density functional theory (DFT).

View Article and Find Full Text PDF

Naphthalene, C10H8, is a polycyclic aromatic hydrocarbon (PAH) consisting of two fused benzene rings. From previous studies, it is known to form three different commensurate structures in thin epitaxial films on Cu(111), depending on the preparation conditions. One of these structures even exhibits a chiral motif of molecular rotations within the unit cell.

View Article and Find Full Text PDF

Low-energy electron diffraction (LEED) is a widely employed technique for the structural characterization of crystalline surfaces and epitaxial adsorbates. For technical reasons the accessible reciprocal space is limited at a given primary electron energy E. This limitation may be overcome by sweeping E to observe higher diffraction orders decisively enhancing the quantitative examination.

View Article and Find Full Text PDF

We developed and implemented an algorithm to determine and correct systematic distortions in low-energy electron diffraction (LEED) images. The procedure is in principle independent of the design of the apparatus (spherical or planar phosphorescent screen vs. channeltron detector) and is therefore applicable to all device variants, known as conventional LEED, micro-channel plate LEED, and spot profile analysis LEED.

View Article and Find Full Text PDF

The material properties of organic thin films depend strongly on their order. The different types of epitaxy may complicate the exploration of the large variety of ordered systems and its exploitation in potential electronic devices. In this Letter, we develop a coherent description of the driving force that creates epitaxial systems.

View Article and Find Full Text PDF

In a recent paper, we discussed the optical properties of a heterostructure consisting of a highly ordered monolayer of quaterrylene (QT), electronically decoupled from the gold substrate by a predeposited epitaxial monolayer of hexa-peri-hexabenzocoronene (HBC). Here we now present the detailed structural investigation of this organic double-layer system. We show that the structure of the heterosystem can be identified as line-on-line coincidence (lol), a new type of epitaxy discovered by us previously for the system 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) on HBC on highly oriented pyrolytic graphite (HOPG).

View Article and Find Full Text PDF

This Perspective does not have the ambition to entirely review the subject of optical spectroscopy on thin organic films. What we will try to achieve instead is to give an overview on optical reflectance spectroscopy of highly ordered organic thin films in the thickness range from submonolayers to several monolayers, as a tool to study the absorption behavior of such films. By doing so, we will emphasize the relations between the physical layer structure and the resulting optical properties.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionps1628gni5qe6rp3d4n9fodoqj9tubkf): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once