Publications by authors named "Roman Fadeev"

One of the key factors of the interaction 'osteoplastic material-organism' is the state of the implant surface. Taking into account the fact that the equilibrium in regeneration conditions is reached only after the reparative histogenesis process is completed, the implant surface is constantly modified. This work is devoted to the numerical description of the dynamic bilateral material-medium interaction under close to physiological conditions, as well as to the assessment of the comparability of the model with and experimental results.

View Article and Find Full Text PDF
Article Synopsis
  • Glutamine is crucial for tumor growth, and its deprivation in solid tumors can hinder their growth and spread, particularly in human glioblastoma cell lines U87MG and T98G.
  • Research indicates that U87MG cells, which have a more differentiated phenotype, show increased glycolysis and stemness marker expression (CD133) when deprived of glutamine, while T98G cells shift towards oxidative phosphorylation and become less responsive to certain drugs.
  • The study highlights that metabolic and phenotypic differences between these glioblastoma cell lines lead to varying drug sensitivities, suggesting that treatment strategies should consider these differences for better outcomes.
View Article and Find Full Text PDF

The escalating threat of multidrug-resistant pathogens necessitates innovative approaches to combat infectious diseases. In this study, we examined peptides R23F*, V31K*, and R44K*, which were engineered to include an amyloidogenic fragment sourced from the S1 protein of , along with one or two cell-penetrating peptide (CPP) components. We assessed the antimicrobial efficacy of these peptides in a liquid medium against various strains of both Gram-positive bacteria, including (209P and 129B strains), MRSA (SA 180 and ATCC 43300 strains), and (strain IP 5832), and Gram-negative bacteria such as (ATCC 28753 and 2943 strains) and (MG1655 and K12 strains).

View Article and Find Full Text PDF

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL/Apo2L) is a promising agent for treatment of AML due to its specific apoptosis-inducing effect on tumor cells but not normal cells. However, emergence of resistance to TRAIL in the AML cells limits its potential as an antileukemic agent. Previously, we revealed increase in the resistance of the human AML THP-1 cells to the TRAIL-induced death during their LPS-dependent proinflammatory activation and in the in vitro model of LPS-independent proinflammatory activation - in a long-term high-density cell culture.

View Article and Find Full Text PDF

Creating bioactive materials for bone tissue regeneration and augmentation remains a pertinent challenge. One of the most promising and rapidly advancing approaches involves the use of low-temperature ceramics that closely mimic the natural composition of the extracellular matrix of native bone tissue, such as Hydroxyapatite (HAp) and its phase precursors (Dicalcium Phosphate Dihydrate-DCPD, Octacalcium Phosphate-OCP, etc.).

View Article and Find Full Text PDF

This study examined the effectiveness of coating demineralized bone matrix (DBM) with amorphous calcium phosphate (DBM + CaP), as well as a composite of DBM, calcium phosphate, and serum albumin (DBM + CaP + BSA). The intact structure of DBM promotes the transformation of amorphous calcium phosphate (CaP) into dicalcium phosphate dihydrate (DCPD) with a characteristic plate shape and particle size of 5-35 µm. The inclusion of BSA in the coating resulted in a better and more uniform distribution of CaP on the surface of DBM trabeculae.

View Article and Find Full Text PDF

Combining antimicrobial peptides (AMPs) with cell-penetrating peptides (CPPs) has shown promise in boosting antimicrobial potency, especially against Gram-negative bacteria. We examined the CPP-AMP interaction with distinct bacterial types based on cell wall differences. Our investigation focused on AMPs incorporating penetratin CPP and dihybrid peptides containing both cell-penetrating TAT protein fragments from the human immunodeficiency virus and Antennapedia peptide (Antp).

View Article and Find Full Text PDF

The human microbiota produces metabolites that can enter the bloodstream and exert systemic effects on various functions in both healthy and pathological states. We have studied the participation of microbiota-related metabolites in bacterial infection by examining their influence on the activity of cyclooxygenase (COX) as a key enzyme of inflammation. The influence of aromatic microbial metabolites, derivatives of phenylalanine (phenylpropionic acid, PPA), tyrosine (4-hydroxyphenyllactic acid, HPLA), and tryptophan (indolacetic acids, IAA), the concentrations of which in the blood change notably during sepsis, was evaluated.

View Article and Find Full Text PDF

Pathological aseptic calcification is the most common form of structural valvular degeneration (SVD), leading to premature failure of heart valve bioprostheses (BHVs). The processing methods used to obtain GA-fixed pericardium-based biomaterials determine the hemodynamic characteristics and durability of BHVs. This article presents a comparative study of the effects of several processing methods on the degree of damage to the ECM of GA-fixed pericardium-based biomaterials as well as on their biostability, biocompatibility, and resistance to calcification.

View Article and Find Full Text PDF

Turpentine oil, owing to the presence of 7-50 terpenes, has analgesic, anti-inflammatory, immunomodulatory, antibacterial, anticoagulant, antioxidant, and antitumor properties, which are important for medical emulsion preparation. The addition of turpentine oil to squalene emulsions can increase their effectiveness, thereby reducing the concentration of expensive and possibly deficient squalene, and increasing its stability and shelf life. In this study, squalene emulsions were obtained by adding various concentrations of turpentine oil via high-pressure homogenization, and the safety and effectiveness of the obtained emulsions were studied in vitro and in vivo.

View Article and Find Full Text PDF

Melatonin (N-acetyl-5-methoxytryptamine, MEL), secreted by the pineal gland, plays an important role in regulation of various functions in the human body. There is evidence that MEL exhibits antitumor effect in various types of cancer. We studied the combined effect of MEL and drugs from different pharmacological groups, such as cytarabine (CYT) and navitoclax (ABT-737), on the state of the pool of acute myeloid leukemia (AML) tumor cell using the MV4-11 cell line as model.

View Article and Find Full Text PDF

Bone grafts with a high potential for osseointegration, capable of providing a complete and effective regeneration of bone tissue, remain an urgent and unresolved issue. The presented work proposes an approach to develop composite biomimetic bone material for reconstructive surgery by deposition (remineralization) on the surface of high-purity, demineralized bone collagen matrix calcium phosphate layers. Histological and elemental analysis have shown reproduction of the bone tissue matrix architectonics, and a high-purity degree of the obtained collagen scaffolds; the cell culture and confocal microscopy have demonstrated a high biocompatibility of the materials obtained.

View Article and Find Full Text PDF

ONC201, the anticancer drug, targets and activates mitochondrial ATP-dependent caseinolytic peptidase P (ClpP), a serine protease located in the mitochondrial matrix. Given the promise of ONC201 in cancer treatment, we evaluated its effects on the breast ductal carcinoma cell line (BT474). We showed that the transient single-dose treatment of BT474 cells by 10 µM ONC201 for a period of less than 48 h induced a reversible growth arrest and a transient activation of an integrated stress response indicated by an increased expression of CHOP, ATF4, and GDF-15, and a reduced number of mtDNA nucleoids.

View Article and Find Full Text PDF

It is known that cell culture density can modulate the drug resistance of acute myeloid leukemia (AML) cells. In this work, we studied the drug sensitivity of AML cells in high-density cell cultures (cell lines THP-1, HL-60, MV4-11, and U937). It was shown that the AML cells in high-density cell cultures in vitro were significantly more resistant to DNA-damaging drugs and recombinant ligand izTRAIL than those in low-density cell cultures.

View Article and Find Full Text PDF

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL/Apo2L) is a highly selective and promising anticancer agent due to its specific apoptosis-inducing effect on tumor cells, rather than most normal cells. TRAIL is currently under investigation for use in the treatment of leukemia. However, the resistance of leukemic cells to TRAIL-induced apoptosis may limit its efficacy.

View Article and Find Full Text PDF

The need to develop new antimicrobial peptides is due to the high resistance of pathogenic bacteria to traditional antibiotics now and in the future. The creation of synthetic peptide constructs is a common and successful approach to the development of new antimicrobial peptides. In this work, we use a simple, flexible, and scalable technique to create hybrid antimicrobial peptides containing amyloidogenic regions of the ribosomal S1 protein from .

View Article and Find Full Text PDF

Octacalcium phosphate (OCP, CaH(PO)·5HO) is known to be a possible precursor of biological hydroxyapatite formation of organic bone tissue. OCP has higher biocompatibility and osseointegration rate compared to other calcium phosphates. In this work, the synthesis of low-temperature calcium phosphate compounds and substituted forms of those at physiological temperatures is shown.

View Article and Find Full Text PDF

The development and testing of new antimicrobial peptides (AMPs) represent an important milestone toward the development of new antimicrobial drugs that can inhibit the growth of pathogens and multidrug-resistant microorganisms such as Gram-negative bacteria. Most AMPs achieve these goals through mechanisms that disrupt the normal permeability of the cell membrane, which ultimately leads to the death of the pathogenic cell. Here, we developed a unique combination of a membrane penetrating peptide and peptides prone to amyloidogenesis to create hybrid peptide: "cell penetrating peptide + linker + amyloidogenic peptide".

View Article and Find Full Text PDF

Various amyloid aggregates, in particular, aggregates of amyloid β-proteins, demonstrate in vitro and in vivo cytotoxic effects associated with impairment of cell adhesion. We investigated the effect of amyloid aggregates of smooth-muscle titin on smooth-muscle-cell cultures. The aggregates were shown to impair cell adhesion, which was accompanied by disorganization of the actin cytoskeleton, formation of filopodia, lamellipodia, and stress fibers.

View Article and Find Full Text PDF

This work investigated in vitro aggregation and amyloid properties of skeletal myosin binding protein-C (sMyBP-C) interacting in vivo with proteins of thick and thin filaments in the sarcomeric A-disc. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) found a rapid (5-10 min) formation of large (>2 μm) aggregates. sMyBP-C oligomers formed both at the initial 5-10 min and after 16 h of aggregation.

View Article and Find Full Text PDF

Controlling the aggregation of vital bacterial proteins could be one of the new research directions and form the basis for the search and development of antibacterial drugs with targeted action. Such approach may be considered as an alternative one to antibiotics. Amyloidogenic regions can, like antibacterial peptides, interact with the "parent" protein, for example, ribosomal S1 protein (specific only for bacteria), and interfere with its functioning.

View Article and Find Full Text PDF

We have shown that hydroxycobalamin (vitamin В) increases the toxicity of diethyldithiocarbamate (DDC) to tumor cells by catalyzing the formation of disulfiram (DSF) oxi-derivatives. The purpose of this study was to elucidate the mechanism of tumor cell death induced by the combination DDC + В. It was found that cell death induced by DDC + B differed from apoptosis, autophagy, and necrosis.

View Article and Find Full Text PDF

Anti-amyloid activity, aggregation behaviour, cytotoxicity and acute toxicity were investigated for three water-soluble fullerene derivatives with different types of solubilizing addends. All investigated compounds showed a strong anti-amyloid effect in vitrocaused by interaction of the water-soluble fullerene derivatives with the Ab(1-42)-peptide and followed by destruction of the amyloid fibrils. Notably, all of the studied fullerene derivatives showed very low cytotoxicity and low acute toxicity in mice (most promising compound 3 was more than four times less toxic than aspirin).

View Article and Find Full Text PDF

One of the main problems in oncology is the development of drugs that cause the death of cancer cells without damaging normal cells. Another key problem to be solved is to suppress the drug resistance of cancer cells. The third important issue is to provide effective penetration of drug molecules to cancer cells.

View Article and Find Full Text PDF

Melatonin is produced by the pineal gland. It can be regarded as an anticancer agent and used for combined therapy, owing to its oncostatic, antioxidant, and immunoregulatory activities. Retinoic acid is widely used for the treatment of acute promyelocytic leukemia; however, it has adverse effects on the human organism.

View Article and Find Full Text PDF