Publications by authors named "Roman Breiter"

Nasal septum defects can currently only be reconstructed using autologous cartilage grafts. In this study, we examine the reconstruction of septal cartilage defects in a rabbit model using porcine decellularized nasal septal cartilage (DNSC) functionalized with recombinant platelet-derived growth factor-BB (PDFG-BB). The supportive function of the transplanted DNSC was estimated by the degree of septum deviation and shrinkage using magnetic resonance imaging (MRI).

View Article and Find Full Text PDF

Objectives: Decellularization of porcine septum cartilage is necessary for its application as xenogenic replacement material. The aim of this study was to investigate spatial differences of structure and composition in the whole native and decellularized porcine nasal septum. Subsequently, the results shall be compared with studies of human nasal septum.

View Article and Find Full Text PDF

Decellularized extracellular matrices (DECM) are among the most common types of materials used in tissue engineering due to their cell instructive properties, biodegradability, and accessibility. Particularly in cartilage, a natural collagen type II matrix can be a promising means to provide the necessary cues and support for chondrogenic stem and progenitor cells (CSPCs). However, efficient remodeling of the transplanted DECM is largely dependent on the host immune response, with macrophages playing the central role in orchestrating both inflammatory and regenerative processes.

View Article and Find Full Text PDF

Whilst the biosorption of metal ions by phototrophic (micro)organisms has been demonstrated in earlier and more recent research, the isolation of rare earth elements (REEs) from highly dilute aqueous solutions with this type of biomass remains largely unexplored. Therefore, the selective binding abilities of two microalgae (Calothrix brevissima, Chlorella kessleri) and one moss (Physcomitrella patens) were examined using Neodym and Europium as examples. The biomass of P.

View Article and Find Full Text PDF

Autologous cartilage as donor tissue for various surgical reconstructions such as nasal septum regeneration is limited and associated with donor site morbidity. Our goal was to evaluate a new resorbable chondroconductive biomaterial made of decellularized porcine nasal septum cartilage compared with autologous native auricular cartilage as the gold standard. In order to examine the material and determine its long-term outcome further, we used subcutaneous implantation and septal implantation in an orthotopic rabbit model.

View Article and Find Full Text PDF

The implantation of autologous cartilage as the gold standard operative procedure for the reconstruction of cartilage defects in the head and neck region unfortunately implicates a variety of negative effects at the donor site. Tissue-engineered cartilage appears to be a promising alternative. However, due to the complex requirements, the optimal material is yet to be determined.

View Article and Find Full Text PDF

Objective The aim of this study was to evaluate the chondroprotective effect of chemically decellularized meniscal allografts transplanted into the knee joints of adult merino sheep. Methods Lateral sheep meniscal allografts were chemically processed by a multistep method to yield acellular, sterile grafts. The grafts were transplanted into the knee joints of sheep that were treated by lateral meniscectomy.

View Article and Find Full Text PDF

Hypothesis: The acoustic properties of scaffolds made from decellularized extracellular cartilage matrices of porcine origin are comparable to those of the human tympanic membrane.

Background: Currently, the reconstruction of tympanic membrane in the context of chronic tympanic membrane defects is mostly performed using autologous fascia or cartilage. Autologous tissue may be associated with lack of graft material in revision patients and requires more invasive and longer operative time.

View Article and Find Full Text PDF

Tissue engineering is considered a promising future option for nasal cartilage repair. However, until now, an optimal material has not been identified for this specific purpose. Therefore, the aim of this study was to analyze a recently developed decellularized collagen matrix, which has promising material properties for septal cartilage repair.

View Article and Find Full Text PDF

One key point in the development of new bioimplant matrices for the reconstruction and replacement of cartilage defects is to provide an adequate microenvironment to ensure chondrocyte migration and de novo synthesis of cartilage-specific extracellular matrix (ECM). A recently developed decellularization and sterilization process maintains the three-dimensional (3D) collagen structure of native septal cartilage while increasing matrix porosity, which is considered to be crucial for cartilage tissue engineering. Human primary nasal septal chondrocytes were amplified in monolayer culture and 3D-cultured on processed porcine nasal septal cartilage scaffolds.

View Article and Find Full Text PDF

Damage of cartilage structures in the head and neck region as well as in orthopedic sites are frequently caused by trauma, tumor resection, or congenital defects. Despite a high demand in many clinical fields, until today, no adequate cartilage replacement matrix is available for these fields of application. Materials that are clinically applied for joint cartilage repair still need optimization due to difficult intraoperative handling and risk of early mechanical damage.

View Article and Find Full Text PDF

The competitive sorption of 1,2-cis-dichloroethene (cis-DCE) and trichloroethene (TCE) was investigated by means of column experiments using a model porous mineral solid represented by silica gel. The experimental isotherms were obtained by employing a chromatographic method. The competitive sorption isotherms were modelled with the extended Freundlich and extended Langmuir isotherms, using the parameters from single-solute experiments.

View Article and Find Full Text PDF

Solid-phase microextraction (SPME) with gas chromatography is to be used for assay of effluent liquid samples from soil column experiments associated with VOC fate/transport studies. One goal of the fate/transport studies is to develop accurate, highly reproducible column breakthrough curves for 1,2-cis-dichloroethylene (cis-DCE) and trichloroethylene (TCE) to better understand interactions with selected natural solid phases. For SPME, the influences of the sample equilibration time, extraction temperature and the ratio of volume of sample bottle to that of the liquid sample (V(T)/V(w)) are the critical factors that could influence accuracy and precision of the measured results.

View Article and Find Full Text PDF

ECOTOX is an automatic early warning system to monitor potential pollution of freshwater, municipal or industrial waste waters or aquatic ecosystems. It is based on a real time image analysis of the motility and orientation parameters of the unicellular, photosynthetic flagellate Euglena gracilis. In order to widen the use of the device to marine habitats and saline waters nine marine flagellates were evaluated as putative bioassay organisms, viz.

View Article and Find Full Text PDF