Drug Discov Today
July 2013
A virtual organisation approach was applied to collaborative drug discovery integrating experimental and computational design approaches. Scientists Against Malaria was formed with the goal of designing novel antimalarial drug candidates. The collaboration of nine founding partners carried out computational and laboratory work that produced significant volumes of data and metadata, the interpretation for the analysis of which, as well as the related decision making, was challenging.
View Article and Find Full Text PDFEscherichia coli β-galactosidase is probably the most widely used reporter enzyme in molecular biology, cell biology, and biotechnology because of the easy detection of its activity. Its large size and tetrameric structure make this bacterial protein an interesting model for crystallographic studies and atomic mapping. In the present study, we investigate a version of Escherichia coli β-galactosidase produced under oxidizing conditions, in the cytoplasm of an Origami strain.
View Article and Find Full Text PDFThe possibility of estimating equilibrium free-energy profiles from multiple non-equilibrium simulations using the fluctuation-dissipation theory or the relation proposed by Jarzynski has attracted much attention. Although the Jarzynski estimator has poor convergence properties for simulations far from equilibrium, corrections have been derived for cases in which the work is Gaussian distributed. Here, we examine the utility of corrections proposed by Gore and collaborators using a simple dissipative system as a test case.
View Article and Find Full Text PDFWe present an interdisciplinary approach that, by incorporating a range of experimental and computational techniques, allows the identification and characterization of functional/immunogenic domains. This approach has been applied to ArtJ, an arginine-binding protein whose orthologs in Chlamydiae trachomatis (CT ArtJ) and pneumoniae (CPn ArtJ) are shown to have different immunogenic properties despite a high sequence similarity (60% identity). We have solved the crystallographic structures of CT ArtJ and CPn ArtJ, which are found to display a type II transporter fold organized in two α-β domains with the arginine-binding region at their interface.
View Article and Find Full Text PDFMapping the conformational space of a polypeptide onto a network of conformational states involves a number of subjective choices, mostly in relation to the definition of conformation and its discrete nature in a network framework. Here, we evaluate the robustness of the topology of conformational-space networks derived from Molecular Dynamics (MD) simulations with respect to the use of different discretization (clustering) methods, variation of their parameters, simulation length and analysis time-step, and removing high-frequency motions from the coordinate trajectories. In addition, we investigate the extent to which polypeptide dynamics can be reproduced on the resulting networks when assuming Markovian behavior.
View Article and Find Full Text PDFLimited searching in the conformational space is one of the major obstacles for investigating protein dynamics by numerical approaches. For this reason, classical all-atom molecular dynamics (MD) simulations of proteins tend to be confined to local energy minima, particularly when the bulk solvent is treated explicitly. To overcome this problem, we have developed a novel replica exchange protocol that uses modified force-field parameters to treat interparticle nonbonded potentials within the protein and between protein and solvent atoms, leaving unperturbed those relative to solvent-solvent interactions.
View Article and Find Full Text PDF