Publications by authors named "Romain Voide"

As shown by recent data bone strength estimation can greatly be improved by including microarchitectural parameters in the analysis. Our previous results showed that intracortical canals (the living space of the vasculature and/or remodeling units) are a major contributor to cortical tissue porosity, and therefore, can be linked to mechanical bone properties. Consequently, the goal of this study was to investigate the importance of the intracortical canal network for murine bone mechanics.

View Article and Find Full Text PDF

Low bone mass is highly prevalent among patients receiving endosseous implants. In turn, the implantation prognosis in low-density skeletal sites is poor. However, little is known about the mechanostructural determinants of implant anchorage.

View Article and Find Full Text PDF

During the last two decades micro-computed tomography has become the method of choice for the non-destructive assessment and quantitative morphometry of hard tissues in three dimensions. With the advent of third-generation synchrotron radiation sources, micro-computed tomography in the micrometer range has become feasible and has been employed to analyze local bone tissue properties. However, owing to limitations regarding the tradeoff between object size and spatial resolution, non-destructive conventional global computed tomography of hard tissues, such as bone, remains unachievable in the submicrometer domain so far.

View Article and Find Full Text PDF

Prostate cancer metastasis to bone results in mixed osteolytic and osteoblastic lesions associated with high morbidity, and there is mounting evidence that the urokinase-type plasminogen system is causatively involved in the progression of prostate cancer. Adult mesenchymal stem cells (MSCs) are promising tools for cell-mediated gene therapy with the advantage of osteogenic potential, a critical issue in the case of osteolytic metastases. In this study, we evaluated the therapeutic use of engineered murine MSCs for in vivo delivery of the urokinase-type plasminogen antagonist amino-terminal fragment (hATF) to impair osteolytic prostate cancer cell progression in bone and to repair bone lesions.

View Article and Find Full Text PDF

Current practice to determine bone tissue modulus of murine cortical bone is to estimate it from three-point bending tests, using Euler-Bernoulli beam theory. However, murine femora are not perfect beams; hence, results can be inaccurate. Our aim was to assess the accuracy of beam theory, which we tested for two commonly used inbred strains of mice, C57BL/6 (B6) and C3H/He (C3H).

View Article and Find Full Text PDF

Biomechanical tests of human femora have shown that small variations of the loading direction result in significant changes in measured bone mechanical properties. However, the heterogeneity in geometrical and bone tissue properties does not make human bones well suited to reproducibly assess the effects of loading direction on stiffness and strength. To precisely quantify the influence of loading direction on stiffness and strength of femora loaded at the femoral head, we tested femora from C57BL/6 inbred mice.

View Article and Find Full Text PDF

The femoral neck is a relevant and sensitive site for studying the degree of osteopenia. Engineering principles predict that bone structural parameters, like cross-sectional geometry, are important determinants of bone mechanical parameters. Mechanical parameters are also directly affected by the material properties of the bone tissue.

View Article and Find Full Text PDF

Inbred strains of mice make useful models to study bone properties. Our aim was to compare bone competence and cortical morphometric parameters of two inbred strains to better determine the role of bone structure and geometry in the process of bone failure. Morphometric analysis was performed on 20 murine femora with a low bone mass (C57BL/6J; B6) and 20 murine femora with a high bone mass (C3H/HeJ; C3H) using desktop microCT.

View Article and Find Full Text PDF

Unlabelled: Nondestructive SR-based microCT and nano-CT methods have been designed for 3D quantification and morphometric analysis of ultrastructural phenotypes within murine cortical bone, namely the canal network and the osteocyte lacunar system. Results in two different mouse strains, C57BL/6J-Ghrhr(lit)/J and C3.B6-Ghrhr(lit)/J, showed that the cannular and lacunar morphometry and their bone mechanics were fundamentally different.

View Article and Find Full Text PDF

Prostate cancer (CaP) cells possess high affinity for bone marrow and predilection to induce bone metastasis. Although the end result of metastasis is predominantly osteoblastic, most patients present mixed lesions with osteolytic component which could initiate and precede bone formation. A precise characterization of tumor-induced bone resorption is thus necessary for early evaluation of therapeutic efficiency.

View Article and Find Full Text PDF