Publications by authors named "Romain L Barnard"

The green revolution successfully increased agricultural output in the early 1960s by relying primarily on three pillars: plant breeding, irrigation, and chemical fertilization. Today, the need to reduce the use of chemical fertilizers, water scarcity, and future environmental changes, together with a growing population, requires innovative strategies to adapt to a new context and prevent food shortages. Therefore, scientists from around the world are directing their efforts to breed crops for future environments to sustainably produce more nutritious food.

View Article and Find Full Text PDF

Rhizodeposition is the export of organic compounds from plant roots to the soil. Carbon allocation towards rhizodeposition has to be balanced with allocation for other physiological functions, which depend on both newly assimilated and stored nonstructural carbohydrate (NSC). To test whether the exudation of primary metabolites scales with plant NSC status, we studied diurnal dynamics of NSC and amino acid (AA) pools and fluxes within the plant and the rhizosphere.

View Article and Find Full Text PDF

Plants are sessile organisms whose survival depends on their strategy to cope with dynamic, stressful conditions. It is urgent to improve the ability of crops to adapt to recurrent stresses in order to alleviate the negative impacts on their productivity. Although our knowledge of plant adaptation to drought has been extensively enhanced during the last decades, recent studies have tackled plant responses to recurrent stresses.

View Article and Find Full Text PDF
Article Synopsis
  • Earth has over 350,000 types of plants, and this study looked at how different plant traits affect things like how much biomass they produce and how much carbon they store.
  • The researchers studied 41 plant traits in 78 grassland areas for 10 years but found that these traits only explained a bit more than 32% of how the ecosystems performed in one year and even less (just about 12%) over the years.
  • They discovered that there wasn't a small group of traits that could explain many ecosystem properties, suggesting that other factors besides plant traits, like weather or soil type, might also be important for understanding changes in ecosystems.
View Article and Find Full Text PDF
Article Synopsis
  • Tebuconazole (TBZ) is a common fungicide in the EU, noted for its persistence in soil and potential environmental impacts due to various transformation products formed during its degradation.
  • The study evaluated TBZ's dissipation in soil under different conditions, revealing that higher TBZ doses and winter conditions significantly extend its persistence and lead to the formation of new transformation products, including a novel compound identified through advanced analytical techniques.
  • Ecotoxicological assessments indicated that TBZ affects the abundance of soil microbial communities, with varying impacts on different prokaryotic taxa based on incubation conditions, highlighting the complexity of TBZ's ecological effects.
View Article and Find Full Text PDF

Changes in frequency and amplitude of rain events, that is, precipitation patterns, result in different water conditions with soil depth, and likely affect plant growth and shape plant and soil microbial activity. Here, we used O stable isotope probing (SIP) to investigate bacterial and fungal communities that actively grew or not upon rewetting, at three different depths in soil mesocosms previously subjected to frequent or infrequent watering for 12 weeks (equal total water input). Phylogenetic marker genes for bacteria and fungi were sequenced after rewetting, and plant-soil microbial coupling documented by plant C-CO labeling.

View Article and Find Full Text PDF

Soil ecosystems worldwide are subjected to marked modifications caused by anthropogenic disturbances and global climate change, resulting in microbial diversity loss and alteration of ecosystem functions. Despite the paucity of studies, restoration ecology provides an appropriate framework for testing the potential of manipulating soil microbial communities for the recovery of ecosystem functioning. We used a reciprocal transplant design in experimentally altered microbial communities to investigate the effectiveness of introducing microbial communities in degraded soil ecosystems to restore N-cycle functioning.

View Article and Find Full Text PDF

Plant diversity effects on ecosystem functioning can potentially interact with global climate by altering fluxes of the radiatively active trace gases nitrous oxide (N2O) and methane (CH4). We studied the effects of grassland species richness (1-16) in combination with application of fertilizer (nitrogen:phosphorus:potassium = 100:43.6:83 kg ha(-1) a(-1)) on N2O and CH4 fluxes in a long-term field experiment.

View Article and Find Full Text PDF

Knowledge gaps regarding potential ontogeny and plant species identity effects on carbon isotope fractionation might lead to misinterpretations of carbon isotope composition (δ13C) of respired CO2, a widely-used integrator of environmental conditions. In monospecific mesocosms grown under controlled conditions, the δ13C of C pools and fluxes and leaf ecophysiological parameters of seven herbaceous species belonging to three functional groups (crops, forage grasses and legumes) were investigated at three ontogenetic stages of their vegetative cycle (young foliage, maximum growth rate, early senescence). Ontogeny-related changes in δ13C of leaf- and soil-respired CO2 and 13C/12C fractionation in respiration (ΔR) were species-dependent and up to 7‰, a magnitude similar to that commonly measured in response to environmental factors.

View Article and Find Full Text PDF

Background: Loss of biodiversity and increased nutrient inputs are two of the most crucial anthropogenic factors driving ecosystem change. Although both received considerable attention in previous studies, information on their interactive effects on ecosystem functioning is scarce. In particular, little is known on how soil biota and their functions are affected by combined changes in plant diversity and fertilization.

View Article and Find Full Text PDF

A large soil CO2 pulse is associated with rewetting soils after the dry summer period under a Mediterranean-type climate, significantly contributing to grasslands' annual carbon budget. Rapid reactivation of soil heterotrophs and a pulse of available carbon are both required to fuel the CO2 pulse. Understanding of the effects of altered summer precipitation on the metabolic state of indigenous microorganisms may be important in predicting changes in carbon cycling.

View Article and Find Full Text PDF

Environmental factors and physiological controls on photosynthesis influence the carbon isotopic signature of ecosystem respiration. Many ecosystem studies have used stable carbon isotopes to investigate environmental controls on plant carbon transfer from above- to belowground. However, a clear understanding of the internal mechanisms underlying time-lagged responses of carbon isotopic signatures in ecosystem respiration to environmental changes is still lacking.

View Article and Find Full Text PDF

Microbes exist in a range of metabolic states (for example, dormant, active and growing) and analysis of ribosomal RNA (rRNA) is frequently employed to identify the 'active' fraction of microbes in environmental samples. While rRNA analyses are no longer commonly used to quantify a population's growth rate in mixed communities, due to rRNA concentration not scaling linearly with growth rate uniformly across taxa, rRNA analyses are still frequently used toward the more conservative goal of identifying populations that are currently active in a mixed community. Yet, evidence indicates that the general use of rRNA as a reliable indicator of metabolic state in microbial assemblages has serious limitations.

View Article and Find Full Text PDF

The microbial response to summer desiccation reflects adaptation strategies, setting the stage for a large rainfall-induced soil CO2 pulse upon rewetting, an important component of the ecosystem carbon budget. In three California annual grasslands, the present (DNA-based) and potentially active (RNA-based) soil bacterial and fungal communities were tracked over a summer season and in response to controlled rewetting of intact soil cores. Phylogenetic marker genes for bacterial (16S) and fungal (28S) RNA and DNA were sequenced, and the abundances of these genes and transcripts were measured.

View Article and Find Full Text PDF

Random reductions in plant diversity can affect ecosystem functioning, but it is still unclear which components of plant diversity (species number - namely richness, presence of particular plant functional groups, or particular combinations of these) and associated biotic and abiotic drivers explain the observed relationships, particularly for soil processes. We assembled grassland communities including 1 to 16 plant species with a factorial separation of the effects of richness and functional group composition to analyze how plant diversity components influence soil nitrifying and denitrifying enzyme activities (NEA and DEA, respectively), the abundance of nitrifiers (bacterial and archaeal amoA gene number) and denitrifiers (nirK, nirS and nosZ gene number), and key soil environmental conditions. Plant diversity effects were largely due to differences in functional group composition between communities of identical richness (number of sown species), though richness also had an effect per se.

View Article and Find Full Text PDF

In order to predict which ecosystem functions are most at risk from biodiversity loss, meta-analyses have generalised results from biodiversity experiments over different sites and ecosystem types. In contrast, comparing the strength of biodiversity effects across a large number of ecosystem processes measured in a single experiment permits more direct comparisons. Here, we present an analysis of 418 separate measures of 38 ecosystem processes.

View Article and Find Full Text PDF

Changes in frequency and intensity of drought events are anticipated in many areas of the world. In pasture, drought effects on soil nitrogen (N) cycling are spatially and temporally heterogeneous due to N redistribution by grazers. We studied soil N cycling responses to simulated summer drought and N deposition by grazers in a 3-year field experiment replicated in two grasslands differing in climate and management.

View Article and Find Full Text PDF

Background: Little is known about the combined impacts of global environmental changes and ecological disturbances on ecosystem functioning, even though such combined impacts might play critical roles in shaping ecosystem processes that can in turn feed back to climate change, such as soil emissions of greenhouse gases.

Methodology/principal Findings: We took advantage of an accidental, low-severity wildfire that burned part of a long-term global change experiment to investigate the interactive effects of a fire disturbance and increases in CO(2) concentration, precipitation and nitrogen supply on soil nitrous oxide (N(2)O) emissions in a grassland ecosystem. We examined the responses of soil N(2)O emissions, as well as the responses of the two main microbial processes contributing to soil N(2)O production--nitrification and denitrification--and of their main drivers.

View Article and Find Full Text PDF

Many studies have scrutinized the nutritional benefits of arbuscular mycorrhizal associations to their host plants, while the carbon (C) balance of the symbiosis has often been neglected. Here, we present quantification of both the C costs and the phosphorus (P) uptake benefits of mycorrhizal association between barrel medic (Medicago truncatula) and three arbuscular mycorrhizal fungal species, namely Glomus intraradices, Glomus claroideum, and Gigaspora margarita. Plant growth, P uptake and C allocation were assessed 7 weeks after sowing by comparing inoculated plants with their non-mycorrhizal counterparts, supplemented with different amounts of P.

View Article and Find Full Text PDF

Values (Δ(i)) predicted by a simplified photosynthetic discrimination model, based only on diffusion through air followed by carboxylation, are often used to infer ecological conditions from the ¹³C signature of plant organs (δ¹³C(p)). Recent studies showed that additional isotope discrimination (d that includes mesophyll conductance, photorespiration and day respiration, and post-carboxylation discrimination) can strongly affect δ¹³C(p); however, little is known about its variability during plant ontogeny for different species. Effect of ontogeny on leaf gas exchange rates, Δ(i) , observed discrimination (Δ(p)) and d in leaf, phloem and root of seven herbaceous species at three ontogenetic stages were investigated under controlled conditions.

View Article and Find Full Text PDF

The diversity-stability hypothesis states that current losses of biodiversity can impair the ability of an ecosystem to dampen the effect of environmental perturbations on its functioning. Using data from a long-term and comprehensive biodiversity experiment, we quantified the temporal stability of 42 variables characterizing twelve ecological functions in managed grassland plots varying in plant species richness. We demonstrate that diversity increases stability i) across trophic levels (producer, consumer), ii) at both the system (community, ecosystem) and the component levels (population, functional group, phylogenetic clade), and iii) primarily for aboveground rather than belowground processes.

View Article and Find Full Text PDF

*Recent studies have highlighted a direct, fast transfer of recently assimilated C from the tree canopy to the soil. However, the effect of environmental changes on this flux remains largely unknown. *We investigated the effects of drought on the translocation of recently assimilated C, by pulse-labelling 1.

View Article and Find Full Text PDF

The analysis of delta(13)C and delta(18)O in tree-ring archives offers retrospective insights into environmental conditions and ecophysiological processes. While photosynthetic carbon isotope discrimination and evaporative oxygen isotope enrichment are well understood, we lack information on how the isotope signal is altered by downstream metabolic processes. In Pinus sylvestris, we traced the isotopic signals from their origin in the leaf water (delta(18)O) or the newly assimilated carbon (delta(13)C), via phloem sugars to the tree-ring, over a time-scale that ranges from hours to a growing season.

View Article and Find Full Text PDF

The (13)C isotopic signature (C stable isotope ratio; delta(13)C) of CO(2) respired from forest ecosystems and their particular compartments are known to be influenced by temporal changes in environmental conditions affecting C isotope fractionation during photosynthesis. Whereas most studies have assessed temporal variation in delta(13)C of ecosystem-respired CO(2) on a day-to-day scale, not much information is available on its diel dynamics. We investigated environmental and physiological controls over potential temporal changes in delta(13)C of respired CO(2) by following the short-term dynamics of the (13)C signature from newly assimilated organic matter pools in the needles, via phloem-transported organic matter in twigs and trunks, to trunk-, soil- and ecosystem-respired CO(2).

View Article and Find Full Text PDF