Locked areas of subduction megathrusts are increasingly found to coincide with landscape features sculpted over hundreds of thousand years, yet the mechanisms that underlie such correlations remain elusive. We show that interseismic locking gradients induce increments of irreversible strain across the overriding plate manifested predominantly as distributed seismicity. Summing these increments over hundreds of earthquake cycles produces a spatially variable field of uplift representing the unbalance of co-, post-, and interseismic strain.
View Article and Find Full Text PDFAlong a plate boundary, why deformation and seismic hazard distributes across multiple active faults or along a single major structure remains unknown. The transpressive Chaman plate boundary (CPB) is a wide faulted region of distributed deformation and seismicity that accommodates the differential motion between India and Eurasia at 30 mm/year. However, main identified faults, including the Chaman fault, only accommodate 12 to 18 mm/year of relative motion and large earthquakes ( > 7) occurred east of them.
View Article and Find Full Text PDFRecent studies have shown that the Himalayan region is under the threat of earthquakes of magnitude nine or larger. These estimates are based on comparisons of the geodetically inferred moment deficit rate with the seismicity of the region. However, these studies did not account for the physics of fault slip, specifically the influence of frictional barriers on earthquake rupture dynamics, which controls the extent and therefore the magnitude of large earthquakes.
View Article and Find Full Text PDFMost earthquake ruptures propagate at speeds below the shear wave velocity within the crust, but in some rare cases, ruptures reach supershear speeds. The physics underlying the transition of natural subshear earthquakes to supershear ones is currently not fully understood. Most observational studies of supershear earthquakes have focused on determining which fault segments sustain fully grown supershear ruptures.
View Article and Find Full Text PDFSystematically characterizing slip behaviours on active faults is key to unraveling the physics of tectonic faulting and the interplay between slow and fast earthquakes. Interferometric Synthetic Aperture Radar (InSAR), by enabling measurement of ground deformation at a global scale every few days, may hold the key to those interactions. However, atmospheric propagation delays often exceed ground deformation of interest despite state-of-the art processing, and thus InSAR analysis requires expert interpretation and a priori knowledge of fault systems, precluding global investigations of deformation dynamics.
View Article and Find Full Text PDFTransient deformation associated with foreshocks activity has been observed before large earthquakes, suggesting the occurrence of a detectable preseismic slow slip during the initiation phase. A critical issue consists in discriminating the relative contributions from seismic and aseismic fault slip during the preparation phase of large earthquakes. We focus on the April-May 2017 Valparaíso earthquake sequence, which involved a = 6.
View Article and Find Full Text PDFSlow slip events result from the spontaneous weakening of the subduction megathrust and bear strong resemblance to earthquakes, only slower. This resemblance allows us to study fundamental aspects of nucleation that remain elusive for classic, fast earthquakes. We rely on machine learning algorithms to infer slow slip timing from statistics of seismic waveforms.
View Article and Find Full Text PDF