Publications by authors named "Romain Giraud"

Background: Alzheimer's disease (AD) is the most common neurodegenerative disease. Unfortunately, efficient and affordable treatments are still lacking for this neurodegenerative disorder, it is therefore urgent to identify new pharmacological targets. Astrocytes are playing a crucial role in the tuning of synaptic transmission and several studies have pointed out severe astrocyte reactivity in AD.

View Article and Find Full Text PDF

Accumulation of amyloid β-peptide (Aβ) is a driver of Alzheimer's disease (AD). Amyloid precursor protein (App) knock-in mouse models recapitulate AD-associated Aβ pathology, allowing elucidation of downstream effects of Aβ accumulation and their temporal appearance upon disease progression. Here we have investigated the sequential onset of AD-like pathologies in App and App knock-in mice by time-course transcriptome analysis of hippocampus, a region severely affected in AD.

View Article and Find Full Text PDF

Collision-induced dissociation (CID) is the most wildly used fragmentation technique for qualitative and quantitative determination of low molecular weight compounds (LMWC). Ultraviolet photodissociation (UVPD) has been mainly investigated for the analysis of peptides and lipids while only in a limited way for LMWC. A triple quadrupole linear ion trap instrument has been modified to allow ultraviolet photodissociation (UVPD) in the end of the q2 region enabling various workflows with and without data-dependent acquisition (DDA) combining CID and UVPD in the same LC-MS analysis.

View Article and Find Full Text PDF

Symmetry breaking in topological matter has become in recent years a key concept in condensed matter physics to unveil novel electronic states. In this work, we predict that broken inversion symmetry and strong spin-orbit coupling in trigonal PtBi lead to a type-I Weyl semimetal band structure. Transport measurements show an unusually robust low dimensional superconductivity in thin exfoliated flakes up to 126 nm in thickness (with ∼ 275-400 mK), which constitutes the first report and study of unambiguous superconductivity in a type-I Weyl semimetal.

View Article and Find Full Text PDF

A method is presented to use atomic force microscopy to measure the cleavage energy of van der Waals materials and similar quasi-two-dimensional materials. The cleavage energy of graphite is measured to be 0.36 J/m, in good agreement with literature data.

View Article and Find Full Text PDF

Unlabelled: Microvesicles, so-called endothelial large extracellular vesicles (LEVs), are of great interest as biological markers and cell-free biotherapies in cardiovascular and oncologic diseases. However, their therapeutic perspectives remain limited due to the lack of reliable data regarding their systemic biodistribution after intravenous administration.

Methods: Applied to a mouse model of peripheral ischemia, radiolabeled endothelial LEVs were tracked and their in vivo whole-body distribution was quantified by microSPECT/CT imaging.

View Article and Find Full Text PDF

Background: Recombinant factor VIII Fc fusion protein (rFVIIIFc) is the first extended half-life (EHL) recombinant clotting factor with marketing authorization; it has been available in France since October 2016. However, data and literature about rFVIIIFc in clinical practice are scarce.

Objective: We propose a 1-year clinical and economic outcome evaluation in patients with hemophilia A taking into consideration treatment adherence.

View Article and Find Full Text PDF

The magnetic properties of the van der Waals magnetic topological insulators MnBi_{2}Te_{4} and MnBi_{4}Te_{7} are investigated by magnetotransport measurements. We evidence that the relative strength of the interlayer exchange coupling J to the uniaxial anisotropy K controls a transition from an A-type antiferromagnetic order to a ferromagneticlike metamagnetic state. A bilayer Stoner-Wohlfarth model allows us to describe this evolution, as well as the typical angular dependence of specific signatures, such as the spin-flop transition of the uniaxial antiferromagnet and the switching field of the metamagnet.

View Article and Find Full Text PDF

The transport length l and the mean free path l are determined for bulk and surface states in a BiSe nanoribbon by quantum transport and transconductance measurements. We show that the anisotropic scattering of spin-helical Dirac fermions results in a strong enhancement of l (≈ 200 nm) and of the related mobility μ (≈ 4000 cm V s), which confirms theoretical predictions.1 Despite strong disorder, the long-range nature of the scattering potential gives a large ratio l/l ≈ 8, likely limited by bulk/surface coupling.

View Article and Find Full Text PDF

Shubnikov-de Haas oscillations were studied under high magnetic field in Bi2Se3 nanostructures grown by chemical vapor transport, for different bulk carrier densities ranging from 3 × 10(19) cm(-3) to 6 × 10(17) cm(-3). The contribution of topological surface states to electrical transport can be identified and separated from bulk carriers and massive two-dimensional electron gas. Band bending is investigated, and a crossover from upward to downward band bending is found at low bulk density as a result of a competition between bulk and interface doping.

View Article and Find Full Text PDF