Electrocaloric materials are promising working bodies for caloric-based technologies, suggested as an efficient alternative to the vapor compression systems. However, their materials efficiency defined as the ratio of the exchangeable electrocaloric heat to the work needed to trigger this heat remains unknown. Here, we show by direct measurements of heat and electrical work that a highly ordered bulk lead scandium tantalate can exchange more than a hundred times more electrocaloric heat than the work needed to trigger it.
View Article and Find Full Text PDFThe electrocaloric effect (ECE) in ferroelectric materials is a promising candidate for small, effective, low cost, and environmentally friendly solid state cooling applications. Instead of the commonly used indirect estimates based on Maxwell's relations, direct measurements of the ECE are required to obtain reliable values. In this work, we report on a custom-made quasi-adiabatic calorimeter for direct ECE measurements.
View Article and Find Full Text PDF