Publications by authors named "Romain Dissard"

Article Synopsis
  • The study investigates the roles of hypoxia and hypoxia inducible factor (HIF) in chronic kidney disease (CKD), revealing that HIF activation and hypoxia levels do not significantly correlate in early stages of the disease.* -
  • Findings show that while there is some hypoxia in late CKD stages, it does not coincide with fibrosis; instead, there is a notable increase in asparaginyl hydroxylase (FIH) expression linked to CKD severity.* -
  • The research suggests that inhibiting FIH pharmacologically could improve kidney function and reduce fibrosis, questioning the previously assumed role of HIF in CKD progression.*
View Article and Find Full Text PDF

Background: NADPH oxidase 4 (NOX4) catalyzes the formation of hydrogen peroxide (HO). NOX4 is highly expressed in the kidney, but its role in renal injury is unclear and may depend on its specific tissue localization.

Methods: We performed immunostaining with a specific anti-NOX4 antibody and measured NOX4 mRNA expression in human renal biopsies encompassing diverse renal diseases.

View Article and Find Full Text PDF

The main function of NADPH oxidases is to catalyse the formation of reactive oxygen species (ROS). NADPH oxidase 4 (NOX4) is expressed at high levels in kidney tubular cells, and at lower levels in endothelial cells, cardiomyocytes and other cell types under physiological conditions. NOX4 is constitutively active producing hydrogen peroxide (H2O2) as the prevalent ROS detected, whereas other NOX isoforms present in the renal and cardiovascular systems (i.

View Article and Find Full Text PDF

NADPH oxidase 4 (NOX4) is highly expressed in kidney proximal tubular cells. NOX4 constitutively produces hydrogen peroxide, which may regulate important pro-survival pathways. Renal ischemia reperfusion injury (IRI) is a classical model mimicking human ischemic acute tubular necrosis.

View Article and Find Full Text PDF

Tubular epithelial cells in the kidney are continuously exposed to urinary fluid shear stress (FSS) generated by urine movement and recent in vitro studies suggest that changes of FSS could contribute to kidney injury. However it is unclear whether FSS alters the epithelial characteristics of the renal tubule. Here, we evaluated in vitro and in vivo the influence of FSS on epithelial characteristics of renal proximal tubular cells taking the organization of junctional complexes and the presence of the primary cilium as markers of epithelial phenotype.

View Article and Find Full Text PDF

Metabolic syndrome can induce chronic kidney disease in humans. Genetically engineered mice on a C57BL/6 background are highly used for mechanistic studies. Although it has been shown that metabolic syndrome induces cardiovascular lesions in C57BL/6 mice, in depth renal phenotyping has never been performed.

View Article and Find Full Text PDF

The role of fluid shear stress is well established in vascular pathophysiology. However, urinary shear stress now also appears as a key mechanism in the regulation of renal function. In addition, there is a growing body of evidence showing that modified urinary shear stress is involved in the development of nephropathies.

View Article and Find Full Text PDF

Modified urinary fluid shear stress (FSS) induced by variations of urinary fluid flow and composition is observed in early phases of most kidney diseases. Recently, we reported that renal tubular FSS promotes endothelial cell activation and subsequent adhesion of human monocytes, thereby suggesting that changes in urinary FSS can induce the development of inflammation (Miravète M, Klein J, Besse-Patin A, Gonzalez J, Pecher C, Bascands JL, Mercier-Bonin M, Schanstra JP, Buffin-Meyer B, BBRC 407: 813-817, 2011). Here, we evaluated the influence of tubular FSS on monocytes as they play an important role in the progression of inflammation in nephropathies.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionausvbu07cq1e9hnrl1tj28r9na68abpg): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once