Terrestrial systems are a significant sink for plastic contamination, including nano- and microplastics (NMPs). To date, limited information is available about the transfer of NMPs up the food web via trophic transfer, however, concerns about this exposure pathway for invertebrates and higher-level organisms have been raised. We aim to examine and quantify the trophic transfer of europium doped polystyrene nanoplastics (Eu-PS; NPs) within a terrestrial food chain.
View Article and Find Full Text PDFThe combined contamination of terrestrial environments by metal(loid)s (MEs) and microplastics (MPs) is a major environmental issue. Once MPs enter soils, they can interact with MEs and modify their environmental availability, environmental bioavailability, and potential toxic effects on biota. Although research efforts have been made to describe the underlying mechanisms driving MP and ME interactions, the effects of MPs on ME bioavailability in terrestrial Mollusca have not yet been documented.
View Article and Find Full Text PDFPlastic has become the most widespread human-made material and small fragments (< 5mm, so called microplastics, MPs) accumulate in all the ecosystems. It is now admitted that the terrestrial environment represents an important sink for MPs and it has only recently become the focus of research, notably in ecotoxicology. In spite of a growing body of evidence regarding the potential effects of MPs on soil biota, more efforts are needed to address issues in this field.
View Article and Find Full Text PDFChlordecone (CLD) is an organochlorine pesticide widely used in the past to control pest insects in banana plantations in the French West Indies. Due to its persistence in the environment, CLD has contaminated the soils where it has been spread, as well as the waters, and is still present in them. The objective of our study was to evaluate the effects of chronic exposure to environmentally relevant CLD concentrations in an animal model, the freshwater hydra (Hydra circumcincta).
View Article and Find Full Text PDF