Publications by authors named "Romain Blanc Mathieu"

MADS transcription factors are master regulators of plant reproduction and flower development. The SEPALLATA (SEP) subfamily of MADS transcription factors is required for the development of floral organs and plays roles in inflorescence architecture and development of the floral meristem. SEPALLATAs act as organizers of MADS complexes, forming both heterodimers and heterotetramers in vitro.

View Article and Find Full Text PDF

JASPAR (https://jaspar.elixir.no/) is a widely-used open-access database presenting manually curated high-quality and non-redundant DNA-binding profiles for transcription factors (TFs) across taxa.

View Article and Find Full Text PDF

The identification of genome-wide transcription factor binding sites (TFBS) is a critical step in deciphering gene and transcriptional regulatory networks. However, determining the genome-wide binding of specific TFs or TF complexes remains a technical challenge. DNA affinity purification sequencing (DAP-seq) and modifications such as sequential DAP-seq (seq-DAP-seq) are robust in vitro methods for mapping individual TF or TF complex binding sites in a genome-wide manner.

View Article and Find Full Text PDF

Transcription factors (TFs) bind DNA at specific sequences to regulate gene expression. This universal process is achieved via their DNA-binding domain (DBD). In mammals, the vast diversity of DBD structural conformations and the way in which they contact DNA has been used to organize TFs in the TFClass hierarchical classification.

View Article and Find Full Text PDF
Article Synopsis
  • The order Parmales consists of tiny eukaryotic marine phytoplankton with silica plates and is closely related to diatoms, a highly successful group of phytoplankton.
  • Researchers compared the genomes of eight parmaleans and five diatoms to understand their physiological and evolutionary differences.
  • The study found that parmaleans are likely phago-mixotrophs, while diatoms evolved to primarily rely on photosynthesis, losing genes related to phagocytosis and developing specialized nutrient uptake mechanisms.
View Article and Find Full Text PDF

DNA methylation is an epigenetic mark that fine-tunes gene expression, notably by negatively or positively regulating transcription factor (TF)-DNA binding. In plants, DNA methylation has primarily been shown to inhibit TF-DNA binding. However, little is known about the underlying mechanisms.

View Article and Find Full Text PDF

In angiosperms, flower development requires the combined action of the transcription factor LEAFY (LFY) and the ubiquitin ligase adaptor F-box protein, UNUSUAL FLORAL ORGANS (UFO), but the molecular mechanism underlying this synergy has remained unknown. Here we show in transient assays and stable transgenic plants that the connection to ubiquitination pathways suggested by the UFO F-box domain is mostly dispensable. On the basis of biochemical and genome-wide studies, we establish that UFO instead acts by forming an active transcriptional complex with LFY at newly discovered regulatory elements.

View Article and Find Full Text PDF

Phosphatidylinositol 4-phosphate 5-kinase (PIP5K) is involved in regulating various cellular processes through the signaling function of its product, phosphatidylinositol (4,5)-bisphosphate. Higher plants encode a large number of PIP5Ks forming distinct clades in their molecular phylogenetic tree. Although biological functions of PIP5K genes have been analyzed intensively in Arabidopsis thaliana, it remains unclear how those functions differ across clades of paralogs.

View Article and Find Full Text PDF

Coastal microbial communities are affected by seasonal environmental change, biotic interactions and fluctuating nutrient availability. We investigated the seasonal dynamics of communities of eukaryotes, a major group of double-stranded DNA viruses that infect eukaryotes (order Imitervirales; phylum Nucleocytoviricota), and prokaryotes in the Uranouchi Inlet, Kochi, Japan. We performed metabarcoding using ribosomal RNA genes and viral polB genes as markers in 43 seawater samples collected over 20 months.

View Article and Find Full Text PDF

JASPAR (http://jaspar.genereg.net/) is an open-access database containing manually curated, non-redundant transcription factor (TF) binding profiles for TFs across six taxonomic groups.

View Article and Find Full Text PDF

Collectively known as phytoplankton, photosynthetic microbes form the base of the marine food web, and account for up to half of the primary production on Earth. Haptophytes are key components of this phytoplankton community, playing important roles both as primary producers and as mixotrophs that graze on bacteria and protists. Viruses influence the ecology and diversity of phytoplankton in the ocean, with the majority of microalgae-virus interactions described as 'boom and bust' dynamics, which are characteristic of acute virus-host systems.

View Article and Find Full Text PDF

The MADS transcription factors (TF) are an ancient eukaryotic protein family. In plants, the family is divided into two main lineages. Here, we demonstrate that DNA binding in both lineages absolutely requires a short amino acid sequence C-terminal to the MADS domain (M domain) called the Intervening domain (I domain) that was previously defined only in type II lineage MADS.

View Article and Find Full Text PDF

Nucleocytoplasmic large DNA viruses (NCLDVs) are highly diverse and abundant in marine environments. However, the knowledge of their hosts is limited because only a few NCLDVs have been isolated so far. Taking advantage of the recent large-scale marine metagenomics census, host prediction approaches are expected to fill the gap and further expand our knowledge of virus-host relationships for unknown NCLDVs.

View Article and Find Full Text PDF

Pioneer transcription factors (TFs) are a special category of TFs with the capacity to bind to closed chromatin regions in which DNA is wrapped around histones and may be highly methylated. Subsequently, pioneer TFs are able to modify the chromatin state to initiate gene expression. In plants, LEAFY (LFY) is a master floral regulator and has been suggested to act as a pioneer TF in Arabidopsis.

View Article and Find Full Text PDF

Viruses have long been viewed as entities possessing extremely limited metabolic capacities. Over the last decade, however, this view has been challenged, as metabolic genes have been identified in viruses possessing large genomes and virions-the synthesis of which is energetically demanding. Here, we unveil peculiar phenotypic and genomic features of virus RF01 (PkV RF01), a giant virus of the family.

View Article and Find Full Text PDF

The biological carbon pump, in which carbon fixed by photosynthesis is exported to the deep ocean through sinking, is a major process in Earth's carbon cycle. The proportion of primary production that is exported is termed the carbon export efficiency (CEE). Based on in-lab or regional scale observations, viruses were previously suggested to affect the CEE (i.

View Article and Find Full Text PDF

The aim of this study was to elucidate the ecological structure of the human gut temperate bacteriophage community and its role in inflammatory bowel disease (IBD). Temperate bacteriophages make up a large proportion of the human gut microbiota and are likely to play a role in IBD pathogenesis. However, many of these bacteriophages await characterization in reference databases.

View Article and Find Full Text PDF

Nucleocytoplasmic large DNA viruses (NCLDVs) are ubiquitous in marine environments and infect diverse eukaryotes. However, little is known about their biogeography and ecology in the ocean. By leveraging the Tara Oceans pole-to-pole metagenomic data set, we investigated the distribution of NCLDVs across size fractions, depths and biomes, as well as their associations with eukaryotic communities.

View Article and Find Full Text PDF

is a group of viruses with large genomes and virions. Ecological relevance of in marine environments has been increasingly recognized through the discoveries of novel isolates and metagenomic studies. To facilitate ecological profiling of , we previously proposed a meta-barcoding approach based on 82 degenerate primer pairs (i.

View Article and Find Full Text PDF

Summary: KofamKOALA is a web server to assign KEGG Orthologs (KOs) to protein sequences by homology search against a database of profile hidden Markov models (KOfam) with pre-computed adaptive score thresholds. KofamKOALA is faster than existing KO assignment tools with its accuracy being comparable to the best performing tools. Function annotation by KofamKOALA helps linking genes to KEGG resources such as the KEGG pathway maps and facilitates molecular network reconstruction.

View Article and Find Full Text PDF

Giant viruses of 'Megaviridae' have the ability to widely disperse around the globe. We herein examined 'Megaviridae' communities in four distinct aquatic environments (coastal and offshore seawater, brackish water, and hot spring freshwater), which are distantly located from each other (between 74 and 1,765 km), using a meta-barcoding method. We identified between 593 and 3,627 OTUs in each sample.

View Article and Find Full Text PDF

Recent discoveries of new large DNA viruses reveal high diversity in their morphologies, genetic repertoires, and replication strategies. Here, we report the novel features of medusavirus, a large DNA virus newly isolated from hot spring water in Japan. Medusavirus, with a diameter of 260 nm, shows a T=277 icosahedral capsid with unique spherical-headed spikes on its surface.

View Article and Find Full Text PDF

Xanthomonas virus (phage) XacN1 is a novel jumbo myovirus infecting Xanthomonas citri, the causative agent of Asian citrus canker. Its linear 384,670 bp double-stranded DNA genome encodes 592 proteins and presents the longest (66 kbp) direct terminal repeats (DTRs) among sequenced viral genomes. The DTRs harbor 56 tRNA genes, which correspond to all 20 amino acids and represent the largest number of tRNA genes reported in a viral genome.

View Article and Find Full Text PDF

While our knowledge about the roles of microbes and viruses in the ocean has increased tremendously due to recent advances in genomics and metagenomics, research on marine microbial eukaryotes and zooplankton has benefited much less from these new technologies because of their larger genomes, their enormous diversity, and largely unexplored physiologies. Here, we use a metatranscriptomics approach to capture expressed genes in open ocean Tara Oceans stations across four organismal size fractions. The individual sequence reads cluster into 116 million unigenes representing the largest reference collection of eukaryotic transcripts from any single biome.

View Article and Find Full Text PDF
Article Synopsis
  • Tiny photosynthetic microorganisms called picoplankton serve as a vital foundation for marine food webs, and their ability to adapt to environmental changes is influenced by genetic variation.
  • Research has revealed significant genomic diversity in the smallest photosynthetic eukaryotes (Chlorophyta, Mamiellophyceae) contradicting the idea of them being clonal or having cryptic species; evidence shows a large, genetically diverse population with signs of sexual reproduction.
  • The study also indicates that this genetic diversity leads to considerable differences among strains, particularly in their resistance to DNA viruses, which appears linked to variations in a specific hypervariable chromosome.
View Article and Find Full Text PDF