The rich extracellular matrix (ECM) and availability make placenta eligible as alternative biomaterial source. Herein we produced placental mouse scaffolds by decellularization, and structure, composition, and cytocompatibility were evaluated to be considered as a biomaterial. We obtained a cell-free scaffold containing 9.
View Article and Find Full Text PDFThe placenta is the most variable organ, in terms of structure, among the species. Besides it, all placental types have the same function: production of viable offspring, independent of pregnancy length, litter number, or invasion level. The angiogenesis is a central mechanism for placental functionality, due to proper maternal-fetal communication and exchanges.
View Article and Find Full Text PDFDue to the scarcity of tissues and organs for transplantation, the demand for bioengineered tissues is increasing with the advancement of technologies and new treatments in human and animal regenerative medicine. Thus, decellularized placental extracellular matrix (ECM) has emerged as a new tool for the production of biological scaffolds for subsequent recellularization and implantation for recovery of injured areas or even for replacement of organ and tissue fractions. To be classified as an ideal biological scaffold, the ECM must be acellular and preserve its proteins and physical features to be useful for cellular adhesion.
View Article and Find Full Text PDFIn horses, pregnancy is characterized by high levels of maternal estrogens that are produced largely by the interstitial tissue inside the gonads of the offspring, associated with a physiological gonadal hyperplasia, that is uncommon in other species. However, a detailed structural-functional understanding of the early stages of gonadal development and hyperplasia has remained elusive in horse pregnancy because of the lack of substantial data. The goal of this study was to describe the genital organs' development in 19 early horse embryos and fetuses (days 20-140 of gestation) of both sexes by means of anatomy, histology, stereology, and immunohistochemistry, with a specific focus on gonadal hyperplasia and interstitial tissue development.
View Article and Find Full Text PDFTechnically produced scaffolds are common to establish transplantable tissues for regenerative medicine, but also biological ones that are closer to the natural condition become of interest. Placentas are promising, because they represented available, complete organs with rich extracellular matrix (ECM) and well-developed vasculature that easily could build anastomoses to a host's organ. Only placentas from larger animal models such as the bovine meet the dimensions large enough for most organs but are not adequately described yet.
View Article and Find Full Text PDF