Publications by authors named "Rolf Heid"

The kagome materials AV_{3}Sb_{5} (A=K, Rb, Cs) host an intriguing interplay between unconventional superconductivity and charge-density waves. Here, we investigate CsV_{3}Sb_{5} by combining high-resolution thermal-expansion, heat-capacity, and electrical resistance under strain measurements. We directly unveil that the superconducting and charge-ordered states strongly compete, and that this competition is dramatically influenced by tuning the crystallographic c axis.

View Article and Find Full Text PDF

Research on charge-density-wave (CDW) ordered transition-metal dichalcogenides continues to unravel new states of quantum matter correlated to the intertwined lattice and electronic degrees of freedom. Here, we report an inelastic x-ray scattering investigation of the lattice dynamics of the canonical CDW compound 2H-TaSe complemented by angle-resolved photoemission spectroscopy and density functional perturbation theory. Our results rule out the formation of a central-peak without full phonon softening for the CDW transition in 2H-TaSe and provide evidence for a novel precursor region above the CDW transition temperature T, which is characterized by an overdamped phonon mode and not detectable in our photoemission experiments.

View Article and Find Full Text PDF

Superconductors are of type I or II depending on whether they form an Abrikosov vortex lattice. Although bulk lead (Pb) is classified as a prototypical type-I superconductor, we show that its two-band superconductivity allows for single-flux-quantum and multiple-flux-quanta vortices in the intermediate state at millikelvin temperature. Using scanning tunneling microscopy, the winding number of individual vortices is determined from the real space wave function of its Caroli-de Gennes-Matricon bound states.

View Article and Find Full Text PDF

An accurate pressure scale is a fundamental requirement to understand planetary interiors. Here, we establish a primary pressure scale extending to the multimegabar pressures of Earth's core, by combined measurement of the acoustic velocities and the density from a rhenium sample in a diamond anvil cell using inelastic x-ray scattering and x-ray diffraction. Our scale agrees well with previous primary scales and shock Hugoniots in each experimental pressure range and reveals that previous scales have overestimated laboratory pressures by at least 20% at 230 gigapascals.

View Article and Find Full Text PDF

The structural coexistence of dual rigid and mobile sublattices in superionic Argyrodites yields ultralow lattice thermal conductivity along with decent electrical and ionic conductivities and therefore attracts intense interest for batteries, fuel cells, and thermoelectric applications. However, a comprehensive understanding of their underlying lattice and diffusive dynamics in terms of the interplay between phonons and mobile ions is missing. Herein, inelastic neutron scattering is employed to unravel that phonon softening on heating to T ≈ 350 K triggers fast Ag diffusion in the canonical superionic Argyrodite Ag GeSe .

View Article and Find Full Text PDF

Understanding the organizing principles of interacting electrons and the emergence of novel electronic phases is a central endeavor of condensed matter physics. Electronic nematicity, in which the discrete rotational symmetry in the electron fluid is broken while the translational one remains unaffected, is a prominent example of such a phase. It has proven ubiquitous in correlated electron systems, and is of prime importance to understand Fe-based superconductors.

View Article and Find Full Text PDF

Electron-phonon coupling, i.e., the scattering of lattice vibrations by electrons and vice versa, is ubiquitous in solids and can lead to emergent ground states such as superconductivity and charge-density wave order.

View Article and Find Full Text PDF

Electron-phonon interaction in the Si(111)-supported rectangular phases of In is investigated within the density-functional theory and linear-response. For both single-layer and double-layer structures, it is found that the phonon-induced scattering of electrons is almost exclusively determined by vibrations of In atoms. It is shown that the strength of electron-phonon coupling at the Fermi level λ(E) increases almost twofold upon adding the second In layer.

View Article and Find Full Text PDF

Regardless of the widely accepted opinion that there is no Raman signal from single-layer graphene when it is strongly bonded to a metal surface, we present Raman spectra of a graphene monolayer on Ni(111) and Co(0001) substrates. The high binding energy of carbon to these surfaces allows formation of lattice-matched (1 × 1) structures where graphene is significantly stretched. This is reflected in a record-breaking shift of the Raman G band by more than 100 cm relative to the case of freestanding graphene.

View Article and Find Full Text PDF

The use of topological edge states for spintronic applications could be severely hampered by limited lifetimes due to intrinsic many-body interactions, in particular electron-phonon coupling. Previous works to determine the intrinsic coupling strength did not provide a coherent answer. Here, the electron-phonon interaction in the metallic surface state of 3D topological insulators is revised within a first principles framework.

View Article and Find Full Text PDF

The iron-based superconductors AFe_{2}As_{2} with A=K, Rb, Cs exhibit large Sommerfeld coefficients approaching those of heavy-fermion systems. We have investigated the magnetostriction and thermal expansion of this series to shed light on this unusual behavior. Quantum oscillations of the magnetostriction allow identifying the band-specific quasiparticle masses which by far exceed the band-structure derived masses.

View Article and Find Full Text PDF

Thermal expansion data are used to study the uniaxial pressure dependence of the electronic-magnetic entropy of Ba(Fe(1-x)Co(x))2As2. Uniaxial pressure is found to be proportional to doping and, thus, also an appropriate tuning parameter in this system. Many of the features predicted to occur for a pressure-tuned quantum critical system, in which superconductivity is an emergent phase hiding the critical point, are observed.

View Article and Find Full Text PDF

We present a first-principles study of the nature of the binding of a c(2×2)-CO overlayer on Ag(001) and of the origin of CO-CO interactions upon adsorption. Electronic structural changes induced by molecular adsorption provide an interpretation for earlier X-ray photoemission valence band spectra of CO/Ag(001). Our results establish that CO chemisorbs on clean Ag(001) and follows the Blyholder model of donation and back-donation between CO and metal orbitals.

View Article and Find Full Text PDF

We examine the phonon dispersion of c(2 × 2)-CO on Ag(001) by applying density functional perturbation theory with the generalized-gradient approximation. Our calculations indicate that the c(2 × 2)-CO overlayer on Ag(001) is dynamically stable. We find that the bond length of CO is expanded and its stretch mode (ν(1)) softened by ∼ 9 meV upon adsorption on Ag(001), in excellent agreement with experiments.

View Article and Find Full Text PDF

Using the local density approximation and a realistic phonon spectrum we determine the momentum and frequency dependence of alpha(2)F(k,omega) in YBa(2)Cu(3)O(7) for the bonding, antibonding, and chain band. The resulting self-energy Sigma is rather small near the Fermi surface. For instance, for the antibonding band the maximum of ReSigma as a function of frequency is about 7 meV at the nodal point in the normal state and the ratio of bare and renormalized Fermi velocities is 1.

View Article and Find Full Text PDF