This article concerns nonlinear model predictive control (MPC) with guaranteed feasibility of inequality path constraints (PCs). For MPC with PCs, the existing methods, such as direct multiple shooting, cannot guarantee feasibility of PCs because the PCs are enforced at finitely many time points only. Therefore, this article presents a novel MPC framework that is capable of not only achieving stability control but also guaranteeing feasibility of PCs during the rolling optimization stages of MPC.
View Article and Find Full Text PDFThe discrete and charge-separated nature of matter - electrons and nuclei - results in local electrostatic fields that are ubiquitous in nanoscale structures and relevant in catalysis, nanoelectronics and quantum nanoscience. Surface-averaging techniques provide only limited experimental access to these potentials, which are determined by the shape, material, and environment of the nanostructure. Here, we image the potential over adatoms, chains, and clusters of Ag and Au atoms assembled on Ag(111) and quantify their surface dipole moments.
View Article and Find Full Text PDFBiotechnology offers many opportunities for the sustainable manufacturing of valuable products. The toolbox to optimize bioprocesses includes extracellular process elements such as the bioreactor design and mode of operation, medium formulation, culture conditions, feeding rates, and so on. However, these elements are frequently insufficient for achieving optimal process performance or precise product composition.
View Article and Find Full Text PDFA bold vision in nanofabrication is the assembly of functional molecular structures using a scanning probe microscope (SPM). This approach requires continuous monitoring of the molecular configuration during manipulation. Until now, this has been impossible because the SPM tip cannot simultaneously act as an actuator and an imaging probe.
View Article and Find Full Text PDFThe determination of the monomer fractions in polyhydroxyalkanoates is of great importance for research on microbial-produced plastic material. The development of new process designs, the validation of mathematical models, and intelligent control strategies for production depend enormously on the correctness of the analyzed monomer fractions. Most of the available detection methods focus on the determination of the monomer fractions of the homopolymer poly(3-hydroxybutyrate).
View Article and Find Full Text PDFBackground: Interleukin-6 is a pleiotropic cytokine with high clinical relevance and an important mediator of cellular communication, orchestrating both pro- and anti-inflammatory processes. Interleukin-6-induced signalling is initiated by binding of IL-6 to the IL-6 receptor α and subsequent binding to the signal transducing receptor subunit gp130. This active receptor complex initiates signalling through the Janus kinase/signal transducer and activator of transcription pathway.
View Article and Find Full Text PDFRadiofrequency ablation is a valuable tool in the treatment of many diseases, especially cancer. However, controlled heating up to apoptosis of the desired target tissue in complex situations, e.g.
View Article and Find Full Text PDFPsychoactive substances affecting the dopaminergic system induce locomotor activation and, in high doses, stereotypies. Network mechanisms underlying the shift from an active goal-directed behavior to a "seemingly purposeless" stereotypic locomotion remain unclear. In the present study we sought to determine the relationships between the behavioral effects of dopaminergic drugs and their effects on local field potentials (LFPs), which were telemetrically recorded within the ventral tegmental area (VTA) of freely moving rats.
View Article and Find Full Text PDFMicroaerobic (oxygen-limited) conditions are critical for inducing many important microbial processes in industrial or environmental applications. At very low oxygen concentrations, however, the process performance often suffers from technical limitations. Available dissolved oxygen measurement techniques are not sensitive enough and thus control techniques, that can reliable handle these conditions, are lacking.
View Article and Find Full Text PDFProduction of bio-pharmaceuticals in cell culture, such as mammalian cells, is challenging. Mathematical models can provide support to the analysis, optimization, and the operation of production processes. In particular, unstructured models are suited for these purposes, since they can be tailored to particular process conditions.
View Article and Find Full Text PDFCellular metabolism continuously processes an enormous range of external compounds into endogenous metabolites and is as such a key element in human physiology. The multifaceted physiological role of the metabolic network fulfilling the catalytic conversions can only be fully understood from a whole-body perspective where the causal interplay of the metabolic states of individual cells, the surrounding tissue and the whole organism are simultaneously considered. We here present an approach relying on dynamic flux balance analysis that allows the integration of metabolic networks at the cellular scale into standardized physiologically-based pharmacokinetic models at the whole-body level.
View Article and Find Full Text PDFSummary: Often competing hypotheses for biochemical networks exist in the form of different mathematical models with unknown parameters. Considering available experimental data, it is then desired to reject model hypotheses that are inconsistent with the data, or to estimate the unknown parameters. However, these tasks are complicated because experimental data are typically sparse, uncertain, and are frequently only available in form of qualitative if-then observations.
View Article and Find Full Text PDFBackground: Apoptosis is a form of programmed cell death essential for the maintenance of homeostasis and the removal of potentially damaged cells in multicellular organisms. By binding its cognate membrane receptor, TNF receptor type 1 (TNF-R1), the proinflammatory cytokine Tumor Necrosis Factor (TNF) activates pro-apoptotic signaling via caspase activation, but at the same time also stimulates nuclear factor κB (NF-κB)-mediated survival pathways. Differential dose-response relationships of these two major TNF signaling pathways have been described experimentally and using mathematical modeling.
View Article and Find Full Text PDFBackground: Mathematical modeling and analysis have become, for the study of biological and cellular processes, an important complement to experimental research. However, the structural and quantitative knowledge available for such processes is frequently limited, and measurements are often subject to inherent and possibly large uncertainties. This results in competing model hypotheses, whose kinetic parameters may not be experimentally determinable.
View Article and Find Full Text PDFConf Proc IEEE Eng Med Biol Soc
March 2008
Bone is a dynamic living tissue that undergoes continuous adaptation of its mass and structure in response to mechanical and biological environment demands. Studies of bone adaptation have focused on metabolic or mechanical stimulus, but mathematical models of bone adaptation considering both, are not available by now. In this paper, we propose a mathematical model of bone adaptation during a remodeling cycle due to mechanical stimulus with the introduction of osteocytes as mechanotransducers.
View Article and Find Full Text PDF