Publications by authors named "Rolf E Engstad"

To relieve the severe economic and social burdens and patient suffering caused by the increasing incidence of chronic wounds, more effective treatments are urgently needed. In this study, we focused on developing a novel sprayable wound dressing with the active ingredient β-1,3/1,6-glucan (βG). Since βG is already available as the active ingredient in a commercial wound healing product provided as a hydrogel in a tube (βG-Gel), the sprayable format should bring clinical benefit by being easily sprayed onto wounds; whilst retaining βG-Gel's physical stability, biological safety and wound healing efficacy.

View Article and Find Full Text PDF

An active wound dressing should address the main goals in wound treatment, which are improved wound healing and reduced infection rates. We developed novel multifunctional nanofibrous wound dressings with three active ingredients: chloramphenicol (CAM), beta-glucan (βG) and chitosan (CHI), of which βG and CHI are active nanofiber-forming biopolymers isolated from the cell walls of and from shrimp shells, respectively. To evaluate the effect of each active ingredient on the nanofibers' morphological features and bioactivity, nanofibers with both βG and CHI, only βG, only CHI and only copolymers, polyethylene oxide (PEO) and hydroxypropylmethylcellulose (HPMC) were fabricated.

View Article and Find Full Text PDF

The increased prevalence of chronic wounds requires novel treatment options. The aim of this study was to develop a beta-glucan (βG)-loaded nanofiber wound dressing. Nanofibers were prepared using the needle-free Nanospider™ technology, an electrospinning method which enables the production of nanofibers at an industrial scale.

View Article and Find Full Text PDF

Chronic wounds represent a significant health problem worldwide. There is a need for advanced- and cost-efficient wound healing products able to increase patient comfort and reduce the healing time. The aim of this study was to develop a sprayable hydrogel dressing with beta-glucan (βG) as the active ingredient, targeting future application in the treatment of both chronic and burn wounds.

View Article and Find Full Text PDF

The present study was undertaken to compare the effects of intraperitoneally injected bacterial lipopolysaccharide (LPS) and yeast beta-glucan on lysozyme activity in Atlantic salmon, and to explore what organ(s) are responsible for the increase in plasma lysozyme activity induced by the compounds. The results indicated that LPS stimulates plasma lysozyme activity at least as efficiently as beta-glucan. The lysozyme gene was shown to be transcribed in head kidney, spleen, liver and intestine, and accumulation of transcript was demonstrated in response to both beta-glucan and LPS in all of these organs.

View Article and Find Full Text PDF

Soluble beta-1,3-glucan has been demonstrated to protect against infection and shock in rats and mice, and clinical studies suggest that administration of soluble glucans to trauma/surgical patients decreases septic complications and improves survival. However, little is known about the precise mechanisms by which glucans influence the state of activation of blood cells, which are responsible for the fulminant cytokine production and the activation of the coagulation system observed in serious gram-negative infection. We studied therefore the effect of an underivatized, soluble yeast beta-1,3-glucan and lipopolysaccharide (LPS), either alone or in combination, on tumor necrosis factor-alpha (TNFalpha), interleukin-6 (IL-6), IL-8 and IL-10 secretion and monocyte tissue factor (TF) expression in human whole blood.

View Article and Find Full Text PDF