Publications by authors named "Rolf Boot"

Article Synopsis
  • Gaucher disease (GD) is a genetic lysosomal storage disorder caused by a deficiency in the enzyme glucocerebrosidase (GBA1), and its diagnosis typically employs assays that can be compromised by background activity from other enzymes.
  • Researchers have developed a selective fluorogenic substrate called 6-O-alkyl-4MU-β-Glc, which effectively targets GBA1 and avoids interference from other enzymes, making it suitable for diagnosing GD.
  • Additionally, analyses of spleen samples from GD patients revealed increased levels of acylated and regular glycosyl lipids, highlighting a potential link between plant-derived glycosyl phytosterols and the disease, raising questions about their role in developing conditions like Parkinson's
View Article and Find Full Text PDF
Article Synopsis
  • GBA2 is an enzyme that plays a critical role in breaking down glucosylceramide and has been linked to diseases like Sandhoff and Niemann-Pick type C, as well as parkinsonism.
  • Researchers have developed a specific activity-based probe (ABP) to study GBA2, which shows promise as a tool for visualizing and understanding this enzyme's function and location within cells.
  • The probe, β-d-arabinofuranosyl cyclitol aziridine, selectively binds to GBA2, allowing researchers to distinguish its subcellular localization from that of another enzyme, GBA1, and suggests a pathway for developing new GBA2 inhibitors for future clinical use.
View Article and Find Full Text PDF

In Gaucher disease (GD), a relatively common sphingolipidosis, the mutant lysosomal enzyme acid β-glucocerebrosidase (GCase), encoded by the gene, fails to properly hydrolyze the sphingolipid glucosylceramide (GlcCer) in lysosomes, particularly of tissue macrophages. As a result, GlcCer accumulates, which, to a certain extent, is converted to its deacylated form, glucosylsphingosine (GlcSph), by lysosomal acid ceramidase. The inability of mutant GCase to degrade GlcSph further promotes its accumulation.

View Article and Find Full Text PDF

Acid β-galactosidase (GLB1) and galactocerebrosidase (GALC) are retaining exo-β-galactosidases involved in lysosomal glycoconjugate metabolism. Deficiency of GLB1 may result in the lysosomal storage disorders GM1 gangliosidosis, Morquio B syndrome, and galactosialidosis, and deficiency of GALC may result in Krabbe disease. Activity-based protein profiling (ABPP) is a powerful technique to assess the activity of retaining glycosidases in relation to health and disease.

View Article and Find Full Text PDF

In Gaucher disease (GD), the deficiency of glucocerebrosidase causes lysosomal accumulation of glucosylceramide (GlcCer), which is partly converted by acid ceramidase to glucosylsphingosine (GlcSph) in the lysosome. Chronically elevated blood and tissue GlcSph is thought to contribute to symptoms in GD patients as well as to increased risk for Parkinson's disease. On the other hand, formation of GlcSph may be beneficial since the water soluble sphingoid base is excreted via urine and bile.

View Article and Find Full Text PDF

Glucocerebrosidase (GCase), encoded by the GBA gene, degrades the ubiquitous glycosphingolipid glucosylceramide. Inherited GCase deficiency causes Gaucher disease (GD). In addition, carriers of an abnormal GBA allele are at increased risk for Parkinson's disease.

View Article and Find Full Text PDF

Glucocerebrosidase (GBA), a lysosomal retaining β-d-glucosidase, has recently been shown to hydrolyze β-d-xylosides and to transxylosylate cholesterol. Genetic defects in GBA cause the lysosomal storage disorder Gaucher disease (GD), and also constitute a risk factor for developing Parkinson's disease. GBA and other retaining glycosidases can be selectively visualized by activity-based protein profiling (ABPP) using fluorescent probes composed of a cyclophellitol scaffold having a configuration tailored to the targeted glycosidase family.

View Article and Find Full Text PDF

Fabry disease (FD) is a lysosomal storage disorder (LSD) characterized by the deficiency of α-galactosidase A (α-GalA) and the consequent accumulation of toxic metabolites such as globotriaosylceramide (Gb3) and globotriaosylsphingosine (lysoGb3). Early diagnosis and appropriate timely treatment of FD patients are crucial to prevent tissue damage and organ failure which no treatment can reverse. LSDs might profit from four main therapeutic strategies, but hitherto there is no cure.

View Article and Find Full Text PDF
Article Synopsis
  • Deficiency in the enzyme glucocerebrosidase (GBA) leads to Gaucher disease, which affects cholesterol metabolism and the breakdown of certain lipids.
  • Research shows that recombinant human GBA can also cleave β-xylosides and transxylosylate cholesterol, producing a new compound, di-xylosyl-cholesterol (XylChol), which is reduced in patients with Gaucher disease.
  • The study identifies xylosylated ceramide (XylCer) as a potential donor for the formation of XylChol, suggesting that food-derived β-D-xylosides and XylCer might play a role in lipid metabolism in cells.
View Article and Find Full Text PDF

Lyso-glycosphingolipids are generated in excess in glycosphingolipid storage disorders. In the course of these pathologies glycosylated sphingolipid species accumulate within lysosomes due to flaws in the respective lipid degrading machinery. Deacylation of accumulating glycosphingolipids drives the formation of lyso-glycosphingolipids.

View Article and Find Full Text PDF

Golgi mannosidase II (GMII) catalyzes the sequential hydrolysis of two mannosyl residues from GlcNAcManGlcNAc to produce GlcNAcManGlcNAc, the precursor for all complex -glycans, including the branched -glycans associated with cancer. Inhibitors of GMII are potential cancer therapeutics, but their usefulness is limited by off-target effects, which produce α-mannosidosis-like symptoms. Despite many structural and mechanistic studies of GMII, we still lack a potent and selective inhibitor of this enzyme.

View Article and Find Full Text PDF

Obesity is taking on worldwide epidemic proportions, yet effective pharmacological agents with long-term efficacy remain unavailable. Previously, we designed the iminosugar N-adamantine-methyloxypentyl-deoxynojirimycin (AMP-DNM), which potently improves glucose homeostasis by lowering excessive glycosphingolipids. Here we show that AMP-DNM promotes satiety and activates brown adipose tissue (BAT) in obese rodents.

View Article and Find Full Text PDF

β-glucosidases [GBA1 (glucocerebrosidase) and GBA2] are ubiquitous essential enzymes. Lysosomal GBA1 and cytosol-facing GBA2 degrade glucosylceramide (GlcCer); GBA1 deficiency causes Gaucher disease, a lysosomal storage disorder characterized by lysosomal accumulation of GlcCer, which is partly converted to glucosylsphingosine (GlcSph). GBA1 and GBA2 also may transfer glucose from GlcCer to cholesterol, yielding glucosylated cholesterol (GlcChol).

View Article and Find Full Text PDF

Gaucher disease is caused by inherited deficiency in glucocerebrosidase (GBA, a retaining β-glucosidase), and deficiency in GBA constitutes the largest known genetic risk factor for Parkinson's disease. In the past, animal models of Gaucher disease have been generated by treatment with the mechanism-based GBA inhibitors, conduritol B epoxide (CBE), and cyclophellitol. Both compounds, however, also target other retaining glycosidases, rendering generation and interpretation of such chemical knockout models complicated.

View Article and Find Full Text PDF

Several diseases are caused by inherited defects in lysosomes, the so-called lysosomal storage disorders (LSDs). In some of these LSDs, tissue macrophages transform into prominent storage cells, as is the case in Gaucher disease. Here, macrophages become the characteristic Gaucher cells filled with lysosomes laden with glucosylceramide, because of their impaired enzymatic degradation.

View Article and Find Full Text PDF

The endocannabinoid system (ECS) is considered to be an endogenous protective system in various neurodegenerative diseases. Niemann-Pick type C (NPC) is a neurodegenerative disease in which the role of the ECS has not been studied yet. Most of the endocannabinoid enzymes are serine hydrolases, which can be studied using activity-based protein profiling (ABPP).

View Article and Find Full Text PDF

Human nonlysosomal glucosylceramidase (GBA2) is one of several enzymes that controls levels of glycolipids and whose activity is linked to several human disease states. There is a major need to design or discover selective GBA2 inhibitors both as chemical tools and as potential therapeutic agents. Here, we describe the development of a fluorescence polarization activity-based protein profiling (FluoPol-ABPP) assay for the rapid identification, from a 350+ library of iminosugars, of GBA2 inhibitors.

View Article and Find Full Text PDF
Article Synopsis
  • A deficiency in the enzyme α-galactosidase A (α-GAL) leads to Fabry disease, where there is a buildup of toxic substances in cells due to glycosphingolipid storage issues.
  • Current treatment options, like enzyme replacement therapy, face challenges due to patients developing neutralizing antibodies, reducing efficacy.
  • The introduction of a modified enzyme, α-NAGAL, shows promise as it has higher activity, is not neutralized by antibodies, and effectively reduces toxic levels of globotriaosylsphingosine (Lyso-Gb3) in Fabry disease patients' serum.
View Article and Find Full Text PDF

Glucocerebrosidase (GBA) is a lysosomal β-glucosidase that degrades glucosylceramide. Its deficiency results in Gaucher disease (GD). We examined the effects of active site occupancy of GBA on its structural stability.

View Article and Find Full Text PDF

Deficiency of glucocerebrosidase (GBA) causes Gaucher disease (GD). In the common non-neuronopathic GD type I variant, glucosylceramide accumulates primarily in the lysosomes of visceral macrophages. Supplementing storage cells with lacking enzyme is accomplished via chronic intravenous administration of recombinant GBA containing mannose-terminated N-linked glycans, mediating the selective uptake by macrophages expressing mannose-binding lectin(s).

View Article and Find Full Text PDF

Galactosylceramidase (GALC) is the lysosomal β-galactosidase responsible for the hydrolysis of galactosylceramide. Inherited deficiency in GALC causes Krabbe disease, a devastating neurological disorder characterized by accumulation of galactosylceramide and its deacylated counterpart, the toxic sphingoid base galactosylsphingosine (psychosine). We report the design and application of a fluorescently tagged activity-based probe (ABP) for the sensitive and specific labeling of active GALC molecules from various species.

View Article and Find Full Text PDF

Gaucher disease is caused by inherited deficiency of lysosomal glucocerebrosidase. Proteome analysis of laser-dissected splenic Gaucher cells revealed increased amounts of glycoprotein nonmetastatic melanoma protein B (gpNMB). Plasma gpNMB was also elevated, correlating with chitotriosidase and CCL18, which are established markers for human Gaucher cells.

View Article and Find Full Text PDF

Small compound active site interactors receive considerable attention for their ability to positively influence the fold of glycosidases. Endoglycoceramidase II (EGCII) from Rhodococcus sp. is an endo-β-glucosidase releasing the complete glycan from ceramide in glycosphingolipids.

View Article and Find Full Text PDF