Publications by authors named "Roldan-Alzate A"

Over the last couple of decades, image-based computational fluid dynamics (CFD) has revolutionized cardiovascular research by uncovering hidden features of wall strain, impact of vortices, and its use in treatment planning, as examples, that were simply not evident in the gold-standard catheterization studies done previously. In the work presented here, we have applied magnetic resonance imaging (MRI)-based CFD to study bladder voiding and to demonstrate the feasibility and potential of this approach. We used 3D dynamic MRI to image the bladder and urethra during voiding.

View Article and Find Full Text PDF

Pulmonary artery stenosis (PAS) often presents in children with congenital heart disease, altering blood flow and pressure during critical periods of growth and development. Variability in stenosis onset, duration, and severity result in variable growth and remodeling of the pulmonary vasculature. Computational fluid dynamics (CFD) models enable investigation into the hemodynamic impact and altered mechanics associated with PAS.

View Article and Find Full Text PDF

Lowery urinary tract symptoms (LUTS) affect a large majority of the aging population. 3D Dynamic MRI shows promise as a noninvasive diagnostic tool that can assess bladder anatomy and function (urodynamics) while overcoming challenges associated with current urodynamic assessment methods. However, validation of this technique remains an unmet need.

View Article and Find Full Text PDF

Noncritical aortic coarctation (COA) typically presents beyond early childhood with hypertension. Correction of COA does not ensure a return to normal cardiovascular health, but the mechanisms are poorly understood. Therefore, we developed a porcine COA model to study the secondary cardiovascular changes.

View Article and Find Full Text PDF

Introduction: Dynamic volumetric MRI was used to non-invasively assess voiding biomechanics in a healthy male volunteer.

Methods: Using 3D Differential Subsampling with Cartesian Ordering (DISCO) Flex acquisition sequence, volumetric bladder images were obtained throughout the voiding effort. These were subsequently segmented using MIMICS.

View Article and Find Full Text PDF

Hemodynamic assessment is an integral part of the diagnosis and management of cardiovascular disease. Four-dimensional cardiovascular magnetic resonance flow imaging (4D Flow CMR) allows comprehensive and accurate assessment of flow in a single acquisition. This consensus paper is an update from the 2015 '4D Flow CMR Consensus Statement'.

View Article and Find Full Text PDF

4D Flow MRI is an advanced imaging technique for comprehensive non-invasive assessment of the cardiovascular system. The capture of the blood velocity vector field throughout the cardiac cycle enables measures of flow, pulse wave velocity, kinetic energy, wall shear stress, and more. Advances in hardware, MRI data acquisition and reconstruction methodology allow for clinically feasible scan times.

View Article and Find Full Text PDF

Purpose: This study addresses the challenges in obtaining abdominal 4D flow MRI of obese patients. We aimed to evaluate spectral saturation and inner volume excitation as methods to mitigating artifacts originating from adipose signals, with the goal of enhancing image quality and improving quantification.

Methods: Radial 4D flow MRI acquisitions with fat mitigation (inner volume excitation [IVE] and intermittent fat saturation [FS]) were compared to a standard slab selective excitation (SSE) in a test-retest study of 15 obese participants.

View Article and Find Full Text PDF

Purpose: The purpose of this work was to establish normal reference values for 4D flow MRI-derived flow, velocity, and vessel diameters, and to define characteristic flow patterns in the portal venous system of healthy adult subjects.

Methods: For this retrospective study, we screened all available 4D flow MRI exams of the upper abdomen in healthy adults acquired at our institution between 2012 and 2022 at either 1.5 T or 3.

View Article and Find Full Text PDF

Purpose: To evaluate feasibility and reproducibility of liver diffusion-weighted (DW) MRI using cardiac-motion-robust, blood-suppressed, reduced-distortion techniques.

Methods: DW-MRI data were acquired at 3T in an anatomically accurate liver phantom including controlled pulsatile motion, in eight healthy volunteers and four patients with known or suspected liver metastases. Standard monopolar and motion-robust (M1-nulled, and M1-optimized) DW gradient waveforms were each acquired with single-shot echo-planar imaging (ssEPI) and multishot EPI (msEPI).

View Article and Find Full Text PDF

4D Flow MRI is a diagnostic tool that can visualize and quantify patient-specific hemodynamics and help interventionalists optimize treatment strategies for repairing coarctation of the aorta (COA). Despite recent developments in 4D Flow MRI, shortcomings include phase-offset errors, limited spatiotemporal resolution, aliasing, inaccuracies due to slow aneurysmal flows, and distortion of images due to metallic artifact from vascular stents. To address these limitations, we developed a framework utilizing Computational Fluid Dynamics (CFD) with Adaptive Mesh Refinement (AMR) that enhances 4D Flow MRI visualization/quantification.

View Article and Find Full Text PDF

Purpose: To determine the variability of blood flow measurements using 4D flow MRI in the portal and mesenteric circulations and to characterize the effects of meal ingestion, time of day, and between-day (diurnal) variations on portal and mesenteric hemodynamics.

Methods: In this IRB-approved and HIPAA-compliant study, 7 healthy and 7 portal hypertension patients imaged. MRI exams were conducted at 3 T using a 32-channel body coil with large volumetric coverage and 1.

View Article and Find Full Text PDF

Evaluation of the hemodynamics in the portal venous system plays an essential role in many hepatic pathologies. Changes in portal flow and vessel morphology are often indicative of disease.Routinely used imaging modalities, such as CT, ultrasound, invasive angiography, and MRI, often focus on either hemodynamics or anatomical imaging.

View Article and Find Full Text PDF

4D flow MRI is a quantitative MRI technique that allows the comprehensive assessment of time-resolved hemodynamics and vascular anatomy over a 3-dimensional imaging volume. It effectively combines several advantages of invasive and non-invasive imaging modalities like ultrasound, angiography, and computed tomography in a single MRI acquisition and provides an unprecedented characterization of velocity fields acquired non-invasively in vivo. Functional and morphological imaging of the abdominal vasculature is especially challenging due to its complex and variable anatomy with a wide range of vessel calibers and flow velocities and the need for large volumetric coverage.

View Article and Find Full Text PDF

Objective: To investigate the relationship between metabolic syndrome (MetS) and lower urinary tract symptoms (LUTS) with functional and anatomic changes of the lower urinary tract with MRI.

Materials And Methods: The bladder and prostate of 95 subjects (56M, 39F) were segmented on T2-weighted pelvic MRI using Materialize Mimics 3D software. Bladder wall volume (BWV), post-void residual (PVR) and prostate volume (PV) were quantified from the 3D renderings.

View Article and Find Full Text PDF

Stanford type B aortic dissection (TBAD) is associated with relatively high rates of morbidity and mortality, and appropriate treatment selection is important for optimizing patient outcomes. Depending on individualized risk factors, clinical presentation, and imaging findings, patients are generally stratified to optimal medical therapy anchored by antihypertensives or thoracic endovascular aortic repair (TEVAR). Using standard anatomic imaging with CT or MRI, several high-risk features including aortic diameter, false lumen (FL) features, size of entry tears, involvement of major aortic branch vessels, or evidence of visceral malperfusion have been used to select patients likely to benefit from TEVAR.

View Article and Find Full Text PDF

Purpose: To assess the effects of cardiovascular-induced motion on conventional DWI of the pancreas and to evaluate motion-robust DWI methods in a motion phantom and healthy volunteers.

Methods: 3T DWI was acquired using standard monopolar and motion-compensated gradient waveforms, including in an anatomically accurate pancreas phantom with controllable compressive motion and healthy volunteers (n = 8, 10). In volunteers, highly controlled single-slice DWI using breath-holding and cardiac gating and whole-pancreas respiratory-triggered DWI were acquired.

View Article and Find Full Text PDF