Publications by authors named "Roland M Van den Berg"

Chemically-induced seizures, as a result of exposure to a neurotoxic compound, present a serious health concern. Compounds can elicit seizure activity through disruption of neuronal signaling by neurotransmitters, either by mimicking, modulating or antagonizing their action at the receptor or interfering with their metabolism. Benzodiazepines, such as diazepam and midazolam, and barbiturates are the mainstay of treatment of seizures.

View Article and Find Full Text PDF

In recent years, various poisoning incidents have been reported, involving the alleged use of the so-called Novichok agents, resulting in their addition to the Schedule I list of the Organisation for the Prohibition of Chemical Warfare (OPCW). As the physicochemical properties of these agents are different from the 'classical' nerve agents, such as VX, research is needed to evaluate whether and to what extent existing countermeasures are effective. Here, we evaluated the therapeutic potential of RSDL® (Reactive Skin Decontamination Lotion Kit) for the neutralization of percutaneous toxicity caused by Novichok agents, both in vitro and in vivo.

View Article and Find Full Text PDF

Organophosphorus nerve agents (NA) inhibit acetylcholinesterase (AChE) which results in the over-stimulation of both the central and peripheral nervous systems, creating a toxic syndrome that can be lethal if left untreated (Cannard, 2006). It is standard practice to treat Sarin (GB) intoxication with an oxime, an antimuscarinic such as atropine and an anticonvulsant. Three common oximes are available: HI-6, Pralidoxime (2-PAM) and Obidoxime (Obi), all possess a nucleophile that can break the NA-AChE covalent bond.

View Article and Find Full Text PDF

Animal models of mild traumatic brain injury (mTBI) provide opportunity to examine the extent to which dietary interventions can be used to improve recovery after injury. Animal studies also suggest that matrix metalloproteinases (MMPs) play a role in tissue remodeling post-TBI. Because dietary zinc (Zn) improved recovery in nonblast mTBI models, and the MMPs are Zn-requiring enzymes, we evaluated the effects of low- (LoZn) and adequate-Zn (AdZn) diets on MMP expression and behavioral responses, subsequent to exposure to a single blast.

View Article and Find Full Text PDF

One of the shortcomings of current treatment of nerve agent poisoning is that not all drugs effectively penetrate the blood-brain barrier (BBB), whereas most nerve agents easily do. P-glycoprotein (Pgp) efflux transporters at the BBB may contribute to this aspect. It was previously shown that Pgp inhibition by tariquidar enhanced the efficacy of nerve agent treatment when administered as a pretreatment.

View Article and Find Full Text PDF

The present study evaluates neuroprotection in a marmoset MPTP (1-methyl-1,2,3,6-tetrahydropyridine) model representing early Parkinson's disease (PD). The anti-glutamatergic compound riluzole is used as a model compound for neuroprotection. The compound is one of the few protective compounds used in the clinic for a neurodegenerative disorder.

View Article and Find Full Text PDF

Study Objectives: Sleep problems are a common phenomenon in most neurological and psychiatric diseases. In Parkinson disease (PD), for instance, sleep problems may be the most common and burdensome non-motor symptoms in addition to the well-described classical motor symptoms. Since sleep disturbances generally become apparent in the disease before motor symptoms emerge, they may represent early diagnostic tools and a means to investigate early mechanisms in PD onset.

View Article and Find Full Text PDF

Elucidation of noncholinesterase protein targets of organophosphates, and nerve agents in particular, may reveal additional mechanisms for their high toxicity as well as clues for novel therapeutic approaches toward intoxications with these agents. Within this framework, we here describe the synthesis of the activity-based probe 3, which contains a phosphonofluoridate moiety, a P-Me moiety, and a biotinylated O-alkyl group, and its use in activity-based protein profiling with two relevant biological samples, that is, rhesus monkey liver and cultured human A549 lung cells. In this way, we have unearthed eight serine hydrolases (fatty acid synthase, acylpeptide hydrolase, dipeptidyl peptidase 9, prolyl oligopeptidase, carboxylesterase, long-chain acyl coenzyme A thioesterase, PAF acetylhydrolase 1b, and esterase D/S-formyl glutathione hydrolase) as targets that are modified by the nerve agent sarin.

View Article and Find Full Text PDF

While skin is a major target for sulphur mustard (HD), a therapy to limit HD-induced vesication is currently not available. Since it is supposed that apoptotic cell death and proteolytic digestion of extracellular matrix proteins by metalloproteases are initiating factors for blister formation, we have explored whether inhibition of these processes could prevent HD-induced epidermal-dermal separation using adult human skin in organ culture. Involvement of the caspase and the metalloprotease families was confirmed by the observation that their respective broad spectrum inhibitors, Z-VAD-fmk and GM6001, each suppressed HD-induced microvesication.

View Article and Find Full Text PDF

Although some toxicological mechanisms of sulfur mustard (HD) have been uncovered, new knowledge will allow for advanced insight in the pathways that lead towards epidermal-dermal separation in skin. In the present investigation, we aimed to survey events that occur at the protein level in human epidermal keratinocytes (HEK) during 24 h after exposure to HD. By using radiolabeled (14)C-HD, it was found that proteins in cultured HEK are significant targets for alkylation by HD.

View Article and Find Full Text PDF