Ribosomally synthesized and post-translationally modified peptides (RiPPs) are structurally complex natural products with diverse bioactivities. Here we report discovery of a RiPP, kintamdin, for which the structure is determined through spectroscopy, spectrometry and genomic analysis to feature a bis-thioether macrocyclic ring and a β-enamino acid residue. Biosynthetic investigation demonstrated that its pathway relies on four dedicated proteins: phosphotransferase KinD, Lyase KinC, kinase homolog KinH and flavoprotein KinI, which share low homologues to enzymes known in other RiPP biosynthesis.
View Article and Find Full Text PDFNeocarazostatin A (NZS) is a bacterial alkaloid with promising bioactivities against free radicals, featuring a tricyclic carbazole nucleus with a prenyl moiety at C-6 of the carbazole ring. Here, we report the discovery and characterization of the biosynthetic pathway of NZS through genome mining and gene inactivation. The in vitro assays characterized two enzymes: NzsA is a P450 hydroxylase and NzsG is a new phytoene-synthase-like prenyltransferase (PTase).
View Article and Find Full Text PDF