Publications by authors named "Roland Favier"

3,5-Diiodothyronine (3,5-T2) has been shown to exert pleiotropic beneficial effects. In this study we investigated whether 3,5-T2 prevent several energy metabolism disorders related to type 2 diabetes mellitus (T2DM) in gerbils diabetes-prone . 157 male gerbils were randomly to Natural Diet (ND-controlled) or a HED (High-Energy Diet) divided in: HED- controlled, HED-3,5-T2 and HED- Placebo groups.

View Article and Find Full Text PDF

Reactive oxygen species (ROS) have been widely implicated in the pathogenesis of diabetes and more recently in mitochondrial alterations in skeletal muscle of diabetic mice. However, so far the exact sources of ROS in skeletal muscle have remained elusive. Aiming at better understanding the causes of mitochondrial alterations in diabetic muscle, we designed this study to characterize the sites of ROS production in skeletal muscle of streptozotocin (STZ)-induced diabetic mice.

View Article and Find Full Text PDF

Besides its well recognized role in lipid and carbohydrate metabolisms, glycerol is involved in the regulation of cellular energy homeostasis via glycerol-3-phosphate, a key metabolite in the translocation of reducing power across the mitochondrial inner membrane with mitochondrial glycerol-3-phosphate dehydrogenase. Here, we report a high rate of gluconeogenesis from glycerol and fatty acid oxidation in hepatocytes from Lou/C, a peculiar rat strain derived from Wistar, which is resistant to age- and diet-related obesity. This feature, associated with elevated cellular respiration and cytosolic ATP/ADP and NAD(+)/NADH ratios, was linked to a high expression and activity of mitochondrial glycerol-3-phosphate dehydrogenase.

View Article and Find Full Text PDF

Nonalcoholic fatty liver disease (NAFLD) has become common liver disease in Western countries. There is accumulating evidence that mitochondria play a key role in NAFLD. Nevertheless, the mitochondrial consequences of steatohepatitis are still unknown.

View Article and Find Full Text PDF

Exposure to reduced activity induces skeletal muscle atrophy. Oxidative stress might contribute to muscle wasting via proteolysis activation. This study aimed to test two hypotheses in rats.

View Article and Find Full Text PDF

This review re-evaluates regulatory aspects of substrate supply in heart. In aerobic heart, the preferred substrates are always free fatty acids, and workload-induced increase in their oxidation is observed at unchanged global levels of ATP, phosphocreatine and AMP. Here, we evaluate the mechanisms of regulation of substrate supply for mitochondrial respiration in muscle cells, and show that a system approach is useful also for revealing mechanisms of feedback signalling within the network of substrate oxidation and particularly for explaining the role of malonyl-CoA in regulation of fatty acid oxidation in cardiac muscle.

View Article and Find Full Text PDF

The aim of the study was to characterize the time course of the development of high-fat diet-induced hepatic steatosis and its relation to body fat accretion and changes in plasma lipid profile. Female Sprague-Dawley rats were high-fat fed (HF; 42 %, kJ) for 1, 2, 4, 6, 12 and 16 weeks and compared to standard fed rats (SD). Data obtained from HF rats were further analysed by classifying the animals into obesity-prone and obesity-resistant.

View Article and Find Full Text PDF

Food restriction is the most effective modulator of oxidative stress and it is believed that a reduction in caloric intake per se is responsible for the reduced generation of reactive oxygen species (ROS) by mitochondria. Hydrogen peroxide (H(2)O(2)) generation and oxygen consumption (O(2)) by skeletal muscle mitochondria were determined in a peculiar strain of rats (Lou/C) characterized by a self-low-caloric intake and a dietary preference for fat. These rats were fed either with a standard high-carbohydrate (HC) or a high-fat (HF) diet and the results were compared to those measured in Wistar rats fed a HC diet.

View Article and Find Full Text PDF

Previous data have demonstrated that, to handle the oxidative stress encountered with training at high intensity, skeletal muscle relies on an increase in mitochondrial biogenesis, a reduced H(2)O(2) production, and an enhancement of antioxidant enzymes. In the present study, we evaluated the influence of voluntary running on mitochondrial O(2) consumption and H(2)O(2) production by intermyofibrillar mitochondria (IFM) and subsarcolemmal mitochondria (SSM) isolated from oxidative muscles in conjunction with the determination of antioxidant capacities. When mitochondria are incubated with succinate as substrate, both maximal (state 3) and resting (state 4) O(2) consumption were significantly lower in SSM than in IFM populations.

View Article and Find Full Text PDF

Objective: The aims of this study were to investigate some features of the metabolic profile and the body composition of male Lou/C rats and to examine whether these characteristics are strictly related to the food-intake reduction.

Research Methods And Procedures: Fourteen-week-old male Lou/C rats were compared with age-matched male Wistar rats fed ad libitum (WAL) and another group of male Wistar rats whose food was chronically restricted (WFR) to the same amount as the Lou/C rats from weeks 3 to 14.

Results: Food intake and body weight were significantly (p < 0.

View Article and Find Full Text PDF

We tested the hypothesis that ovarian steroids stimulate breathing through a dopaminergic mechanism in the carotid bodies. In ovariectomized female rats raised at sea level, domperidone, a peripheral D2-receptor antagonist, increased ventilation in normoxia (minute ventilation = +55%) and acute hypoxia (+32%). This effect disappeared after 10 daily injections of ovarian steroids (progesterone + estradiol).

View Article and Find Full Text PDF