Human organoids recapitulating the cell-type diversity and function of their target organ are valuable for basic and translational research. We developed light-sensitive human retinal organoids with multiple nuclear and synaptic layers and functional synapses. We sequenced the RNA of 285,441 single cells from these organoids at seven developmental time points and from the periphery, fovea, pigment epithelium and choroid of light-responsive adult human retinas, and performed histochemistry.
View Article and Find Full Text PDFHigh-density microelectrode arrays can be used to record extracellular action potentials from hundreds to thousands of neurons simultaneously. Efficient spike sorters must be developed to cope with such large data volumes. Most existing spike sorting methods for single electrodes or small multielectrodes, however, suffer from the "curse of dimensionality" and cannot be directly applied to recordings with hundreds of electrodes.
View Article and Find Full Text PDFStudies on information processing and learning properties of neuronal networks would benefit from simultaneous and parallel access to the activity of a large fraction of all neurons in such networks. Here, we present a CMOS-based device, capable of simultaneously recording the electrical activity of over a thousand cells in in vitro neuronal networks. The device provides sufficiently high spatiotemporal resolution to enable, at the same time, access to neuronal preparations on subcellular, cellular, and network level.
View Article and Find Full Text PDF