Publications by authors named "Roland De Marco"

As a widely used commodity chemical, ammonia is critical for producing nitrogen-containing fertilizers and serving as the promising zero-carbon energy carrier. Photoelectrochemical nitrogen reduction reaction (PEC NRR) can provide a solar-powered green and sustainable route for synthesis of ammonia (NH ). Herein, an optimum PEC system is reported with an Si-based hierarchically-structured PdCu/TiO /Si photocathode and well-thought-out trifluoroethanol as the proton source for lithium-mediated PEC NRR, achieving a record high NH yield of 43.

View Article and Find Full Text PDF

Enhancing charge-carrier dynamics is imperative to achieve efficient photoelectrodes for practical photoelectrochemical devices. However, a convincing explanation and answer for the important question which has thus far been absent relates to the precise mechanism of charge-carrier generation by solar light in photoelectrodes. Herein, to exclude the interference of complex multi-components and nanostructuring, we fabricate bulky TiO photoanodes through physical vapor deposition.

View Article and Find Full Text PDF

Spintronics holds great potential for next-generation high-speed and low-power consumption information technology. Recently, lead halide perovskites (LHPs), which have gained great success in optoelectronics, also show interesting magnetic properties. However, the spin-related properties in LHPs originate from the spin-orbit coupling of Pb, limiting further development of these materials in spintronics.

View Article and Find Full Text PDF

Here, we provide the first experimental evidence of proton release from polyaniline (PANI) films subjected to anodic potentials at environmental pHs. We conducted an extensive characterization of unpolarized/polarized PANI films-synthesized by traditional sequential voltammetric scanning-by using spectroelectrochemistry, synchrotron radiation-X-ray photoelectron spectroscopy, near edge X-ray absorption fine structure, and potentiometric pH sensing in the vicinity of the PANI layer. This new insight enables the utilization of PANI as a proton pump, which is actively tuned through an electrochemical pulse, so as to controllably acidify well-confined thin layer samples.

View Article and Find Full Text PDF

Water-splitting photoanodes based on semiconductor materials typically require a dopant in the structure and co-catalysts on the surface to overcome the problems of charge recombination and high catalytic barrier. Unlike these conventional strategies, a simple treatment is reported that involves soaking a sample of pristine BiVO in a borate buffer solution. This modifies the catalytic local environment of BiVO by the introduction of a borate moiety at the molecular level.

View Article and Find Full Text PDF

Iron single atom catalysts (Fe SACs) are the best-known nonprecious metal (NPM) catalysts for the oxygen reduction reaction (ORR) of polymer electrolyte membrane fuel cells (PEMFCs), but their practical application has been constrained by the low Fe SACs loading (<2 wt%). Here, a one-pot pyrolysis method is reported for the synthesis of iron single atoms on graphene (FeSA-G) with a high Fe SAC loading of ≈7.7 ± 1.

View Article and Find Full Text PDF

Single-atom catalysts (SACs) are the smallest entities for catalytic reactions with projected high atomic efficiency, superior activity, and selectivity; however, practical applications of SACs suffer from a very low metal loading of 1-2 wt%. Here, a class of SACs based on atomically dispersed transition metals on nitrogen-doped carbon nanotubes (MSA-N-CNTs, where M = Ni, Co, NiCo, CoFe, and NiPt) is synthesized with an extraordinarily high metal loading, e.g.

View Article and Find Full Text PDF

As differentiated from conventional synthetic processes, amino-functionalized hollow mesoporous silica (NH-HMS) has been synthesized using a new and facile strategy of ion-exchange-induced selective etching of amino-functionalized mesoporous silica (NH-meso-silica) by an alkaline solution. Nuclear magnetic resonance (NMR) spectroscopy and in situ time-resolved small-angle X-ray scattering (SAXS) reveal that ion-exchange-induced selective etching arises from the gradient distribution of OH in the NH-meso-silica nanospheres. Moreover, the ion-exchange-induced selective etching mechanism is verified through a successful synthesis of hollow mesoporous silica.

View Article and Find Full Text PDF

To understand the rate determining processes during the equilibration of poly(3,4-ethylenedioxythiophene):polystyrenesulfonate-based (PEDOT(PSS)-based) solid contact (SC) ion-selective electrodes (ISEs), the surfaces of Pt, Au, and GC electrodes were coated with 0.1, 1.0, 2.

View Article and Find Full Text PDF

This paper presents the first direct spectroscopic evidence for double layer or capacitive charging of carbon nanomaterial-based solid contacts in all-solid-state polymeric ion-selective electrodes (ISEs). Here, we used synchrotron radiation-X-ray photoelectron spectroscopy (SR-XPS) and SR valence band (VB) spectroscopy in the elucidation of the charging mechanism of the SCs.

View Article and Find Full Text PDF

We report on the limiting conditions for ion-transfer voltammetry between an ion-exchanger doped and plasticized poly(vinyl chloride) (PVC) membrane and an electrolyte solution that was triggered via the oxidation of a poly(3-octylthiophene) (POT) solid-contact (SC), which was unexpectedly related to the thickness of the POT SC. An electropolymerized 60 nm thick film of POT coated with a plasticized PVC membrane exhibited a significant sodium transfer voltammetric signal whereas a thicker film (180 nm) did not display a measurable level of ion transfer due to a lack of oxidation of thick POT beneath the membrane film. In contrast, this peculiar phenomenon was not observed when the POT film was in direct contact with an organic solvent-based electrolyte.

View Article and Find Full Text PDF

The transportation and accumulation of redox active species at the buried interface between glassy carbon electrodes and plasticized polymeric membranes have been studied using synchrotron radiation X-ray photoelectron spectroscopy (SR-XPS), near edge X-ray absorption fine structure (NEXAFS), in situ electrochemical Fourier transform infrared-attenuated total reflectance (FTIR-ATR) spectroscopy, cyclic voltammetry (CV), chronoamperometry (CA), and electrochemical impedance spectroscopy (EIS). Ferrocene tagged poly(vinyl chloride) [FcPVC], ferrocene (Fc), and its derivatives together with tetracyanoquinodimethane (TCNQ) doped plasticized polymeric membrane electrodes have been investigated, so as to extend the study of the mechanism of this reaction chemistry to different time scales (both small and large molecules with variable diffusion coefficients) using a range of complementary electrochemical and surface analysis techniques. This study also provides direct spectroscopic evidence for the transportation and electrochemical reactivity of redox active species, regardless of the size of the electrochemically reactive molecule, at the buried interface of the substrate electrode.

View Article and Find Full Text PDF

Three new calixarene Tl(+) ionophores have been utilized in Tl(+) ion-selective electrodes (ISEs) yielding Nernstian response in the concentration range of 10(-2)-10(-6)M TlNO3 with a non-optimized filling solution in a conventional liquid contact ISE configuration. The complex formation constants (logβIL) for two of the calixarene derivatives with thallium(I) (i.e.

View Article and Find Full Text PDF

A novel inorganic proton exchange membrane based on phosphoric acid (PA)-functionalized sintered mesoporous silica, PA-meso-silica, has been developed and investigated. After sintering at 650 °C, the meso-silica powder forms a dense membrane with a robust and ordered mesoporous structure, which is critical for retention of PA and water within the porous material. The PA-meso-silica membrane achieved a high proton conductivity of 5 × 10(-3) to 5 × 10(-2) S cm(-1) in a temperature range of 80-220 °C, which is between 1 and 2 orders of magnitudes higher than a typical membrane Nafion 117 or polybenzimidazole (PBI)/PA in the absence of external humidification.

View Article and Find Full Text PDF

The ion-to-electron transduction reaction mechanism at the buried interface of the electrosynthesized poly(3-octylthiophene) (POT) solid-contact (SC) ion-selective electrode (ISE) polymeric membrane has been studied using synchrotron radiation-X-ray photoelectron spectroscopy (SR-XPS), near edge X-ray absorption fine structure (NEXAFS), and electrochemical impedance spectroscopy (EIS)/neutron reflectometry (NR). The tetrakis[3,5-bis(triflouromethyl)phenyl]borate (TFPB(-)) membrane dopant in the polymer ISE was transferred from the polymeric membrane to the outer surface layer of the SC on oxidation of POT but did not migrate further into the oxidized POT SC. The TFPB(-) and oxidized POT species could only be detected at the outer surface layer (≤14 Ǻ) of the SC material, even after oxidation of the electropolymerized POT SC for an hour at high anodic potential demonstrating that the ion-to-electron transduction reaction is a surface confined process.

View Article and Find Full Text PDF

Cyclic voltammetry (CV), synchrotron radiation-X-ray photoelectron spectroscopy (SR-XPS) and near edge X-ray absorption fine structure (NEXAFS) show that oxidation of ferrocene tagged PVC induces an accumulation of high molecular weight polymer at the buried interface between the substrate electrode and the plasticized membrane.

View Article and Find Full Text PDF

An inorganic proton exchange membrane based on sintered mesoporous silica and phosphoric acid was developed with a high proton conductivity of 0.06 S cm(-1) at 200 °C, achieving an excellent power output of 689 mW cm(-2) in H2 at 190 °C and 200 mW cm(-2) in methanol at 200 °C with no external humidification.

View Article and Find Full Text PDF

Resistivities of thin polymer films increase abruptly with decreasing thickness, although the corresponding decline in resistance plateaus below a certain thickness. One can jump to the incorrect conclusion that quantum confinement and surface scattering are responsible for this behaviour, and we highlight the pitfalls of committing such an error.

View Article and Find Full Text PDF

A nitrate ion-selective electrode (ISE) employing a permeable tubular membrane impregnated with a conventional ISE cocktail has been used successfully in the coulometric analysis of nitrate in fresh waters. The liquid ISE membrane comprising a nitrate ionophore [tridodecylmethylammonium nitrate (TDMAN)], lipophilic electrolyte [tetradodecyl-ammoniumtetrakis(4-chlorophenyl)borate (ETH 500)] and plasticizer [bis(3-ethyl-hexyl)sebacate (DOS)] was supported on a porous polypropylene tube. Coulometric analysis with the tubular membrane ISE showed that nitrate could be detected in the range 10-100 μM with a precision of 2.

View Article and Find Full Text PDF

Seawater analysis is one of the most challenging in the field of environmental monitoring, mainly due to disparate concentration levels between the analyte and the salt matrix causing interferences in a variety of analytical techniques. We propose here a miniature electrochemical sample pretreatment system for a rapid removal of NaCl utilizing the coaxial arrangement of an electrode and a tubular Nafion membrane. Upon electrolysis, chloride is deposited at the Ag electrode as AgCl and the sodium counterions are transported across the membrane.

View Article and Find Full Text PDF

Solid-contact (SC) ion-selective electrodes (ISEs) utilizing thin films of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) and plasticized poly(vinylchloride) (PVC) have been produced using a spin casting procedure. This study was carried out with a view of characterizing this popular and well known SC ISE using a series of complementary surface analysis techniques. This work revealed that PEDOT:PSS prevents the separation of an undesirable water layer at the buried interface of this SC ISE due to the high miscibility of water in the hydrophilic PEDOT:PSS layer.

View Article and Find Full Text PDF

Both Keggin-type phosphotungstic acid (HPW) and Pd are not prominent catalysts towards the oxygen reduction (ORR), but their composite Pd-HPW catalyst produces a significantly higher electrochemical activity for the ORR in acidic media. The novel composite catalyst was synthesized by self-assembly of HPW on multi-walled carbon nanotubes (MWCNTs) via the electrostatic attraction between negatively charged HPW and positively charged poly(diallyldimethylammonium (PDDA)-wrapped MWCNTs, followed by dispersion of Pd nanoparticles onto the HPW-PDDA-MWCNT assembly. The as-prepared catalyst was characterized by transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, thermal gravimetric analysis (TGA), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS).

View Article and Find Full Text PDF

Electrochemical impedance spectroscopy (EIS) has been used to estimate the non-frequency dependent (static) dielectric constants of base polymers such as poly(vinyl chloride) (PVC), cellulose triacetate (CTA) and polystyrene (PS). Polymer inclusion membranes (PIMs) containing different amounts of PVC or CTA, along with the room temperature ionic liquid Aliquat 336 and plasticizers such as trisbutoxyethyl phosphate (TBEP), dioctyl sebecate (DOS) and 2-nitrophenyloctyl ether (NPOE) have been investigated. In this study, the complex and abstract method of EIS has been applied in a simple and easy to use way, so as to make the method accessible to membrane scientists and engineers who may not possess the detailed knowledge of electrochemistry and interfacial science needed for a rigorous interpretation of EIS results.

View Article and Find Full Text PDF

This paper reports on three-dimensional synchrotron radiation/Fourier transform-infrared microspectroscopy (SR/FT-IRM) imaging studies of water inclusions at the buried interface of solid-contact-ion-selective electrodes (SC-ISEs). It is our intention to describe a nondestructive method that may be used in surface studies of the buried interfaces of materials, especially multilayers of polymers. Herein, we demonstrate the power of SR/FT-IRM for studying water inclusions at the buried interfaces of SC-ISEs.

View Article and Find Full Text PDF

As a promising high-temperature fuel cell, the direct carbon fuel cell (DCFC) has a much higher efficiency and a lower emission as compared with conventional coal-fired power plants. To develop an increased understanding of the relationship between the microstructure, surface chemistry, and electrochemical performance of coal as a fuel for the DCFC, a coal sample from Central Queensland has been subjected to various pretreatments, including acid washing, air oxidation, and pyrolysis. It has been found that an acid treatment of the coal enhanced its electrochemical reactivity due to an increase in oxygen-containing surface functional groups.

View Article and Find Full Text PDF