Background: Mechanical ventilation is an essential component in the treatment of patients with acute respiratory distress syndrome. Prompt adaptation of the settings of a ventilator to the variable needs of patients is essential to ensure personalised and protective ventilation. Still, it is challenging and time-consuming for the therapist at the bedside.
View Article and Find Full Text PDFDue to the global COVID-19 pandemic, a concomitant increase in awareness for end-of-life decisions (EOLDs) and advance care planning has been noted. Whether the dynamic pandemic situation impacted EOLD-processes on the intensive care unit (ICU) and patient-sided advance care planning in Germany is unknown. This is a retrospective analysis of all deceased patients of surgical ICUs of a university medical center from March 2020 to July 2021.
View Article and Find Full Text PDFBackground: Models of hypoxemic lung injury caused by lavage-induced pulmonary surfactant depletion are prone to prompt recovery of blood oxygenation following recruitment maneuvers and have limited translational validity. We hypothesized that addition of injurious ventilation following surfactant-depletion creates a model of the acute respiratory distress syndrome (ARDS) with persistently low recruitability and higher levels of titrated "best" positive end-expiratory pressure (PEEP) during protective ventilation.
Methods: Two types of porcine lung injury were induced by lung lavage and 3 h of either protective or injurious ventilation, followed by 3 h of protective ventilation (N = 6 per group).
Unlabelled: To investigate the ICU survival of venovenous extracorporeal membrane oxygenation (ECMO) patients suffering from COVID-19-related acute respiratory distress syndrome (ARDS) versus ECMO patients without COVID-19 (non-COVID-19)-related ARDS.
Design: Preliminary analysis of data from two prospective ECMO trials and retrospective analysis of a cohort of ARDS ECMO patients.
Setting: Single-center ICU.
Packed red blood cells (PRBCs), stored for prolonged intervals, might contribute to adverse clinical outcomes in critically ill patients. In this study, short-term outcome after transfusion of PRBCs of two storage duration periods was analyzed in patients with Acute Respiratory Distress Syndrome (ARDS). Patients who received transfusions of PRBCs were identified from a cohort of 1044 ARDS patients.
View Article and Find Full Text PDFThe contribution of veno-venous (VV) extracorporeal membrane oxygenation (ECMO) to systemic oxygen delivery is determined by the ratio of total extracorporeal blood flow () to cardiac output (). Thermodilution-based measurements of may be compromised by blood recirculating through the ECMO (recirculation fraction; Rf). We measured the effects of and Rf on classic thermodilution-based measurements of in six anesthetized pigs.
View Article and Find Full Text PDF: Mortality on Intensive Care Units (ICUs) is high and death frequently occurs after decisions to limit life-sustaining therapies. An advance directive is a tool meant to preserve patient autonomy by guiding anticipated future treatment decisions once decision-making capacity is lost. Since September 2009, advance directives are legally binding for the caregiver team and the patients' surrogate decision-maker in Germany.
View Article and Find Full Text PDFVarious animal models exist to study the complex pathomechanisms of the acute respiratory distress syndrome (ARDS). These models include pulmo-arterial infusion of oleic acid, infusion of endotoxins or bacteria, cecal ligation and puncture, various pneumonia models, lung ischemia/reperfusion models and, of course, surfactant depletion models, among others. Surfactant depletion produces a rapid, reproducible deterioration of pulmonary gas exchange and hemodynamics and can be induced in anesthetized pigs using repeated lung lavages with 0.
View Article and Find Full Text PDFPurpose: Admixture of nitric oxide (NO) to the gas inspired with mechanical ventilation can be achieved through continuous, timed, or pulsed injection of NO into the inspiratory limb. The dose and timing of NO injection govern the inspired and intrapulmonary effect site concentrations achieved with different administration modes. Here we test the effectiveness and target reliability of a new mode injecting pulsed NO boluses exclusively during early inspiration.
View Article and Find Full Text PDFOxidative stress caused by mechanical ventilation contributes to the pathophysiology of ventilator-induced lung injury (VILI). A key mechanism maintaining redox balance is the upregulation of nuclear factor-erythroid-2-related factor 2 (Nrf2)-dependent antioxidant gene expression. We tested whether pretreatment with an Nrf2-antioxidant response element (ARE) pathway activator -butylhydroquinone (tBHQ) protects against VILI.
View Article and Find Full Text PDFPurpose Of Review: Trauma-associated bleeding and coagulopathy require timely identification, prevention, and effective treatment. The present review summarizes the recent literature around point-of-care (POC) coagulation tests, their usefulness in the management of trauma-induced coagulopathy (TIC), their impact on trauma patient outcomes, and the requirement of quality assurance.
Recent Findings: Best practice algorithms to manage TIC have been compiled in the 2019 European Guideline on the management of major bleeding and coagulopathy after trauma.
Background: Frailty is a frequent and underdiagnosed functional syndrome involving reduced physiological reserves and an increased vulnerability against stressors, with severe individual and socioeconomic consequences. A routine frailty assessment was implemented at our preoperative anaesthesia clinic to identify patients at risk.
Objective: This study examines the relationship between frailty status and the incidence of in-hospital postoperative complications in elderly surgical patients across several surgical disciplines.
Objectives: Mechanical ventilation can cause ventilator-induced brain injury via afferent vagal signaling and hippocampal neurotransmitter imbalances. The triggering mechanisms for vagal signaling during mechanical ventilation are unknown. The objective of this study was to assess whether pulmonary transient receptor potential vanilloid type-4 (TRPV4) mechanoreceptors and vagal afferent purinergic receptors (P2X) act as triggers of ventilator-induced brain injury.
View Article and Find Full Text PDFAnasthesiol Intensivmed Notfallmed Schmerzther
November 2018
Anasthesiol Intensivmed Notfallmed Schmerzther
April 2018
Hemolysis leads to an increase of circulating intravascular cell-free hemoglobin. Increased plasma concentrations of cell-free hemoglobin are relevant in critically ill patients because cell-free hemoglobin causes vasoconstriction by depletion of endothelial nitric oxide, oxidative stress, and inflammation. Furthermore, cell-free hemoglobin contributes to tissue injuries such as renal failure and intestinal mucosa damage after cardiac surgery.
View Article and Find Full Text PDFKey Points: Carbonic anhydrase (CA) inhibitors such as acetazolamide inhibit hypoxic pulmonary vasoconstriction (HPV) in humans and other mammals, but the mechanism of this action remains unknown. It has been postulated that carbonic anhydrase may act as a nitrous anhydrase in vivo to generate nitric oxide (NO) from nitrite and that this formation is increased in the presence of acetazolamide. Acetazolamide reduces HPV in pigs without evidence of any NO generation, whereas nebulized sodium nitrite reduces HPV by NO formation; however; combined infusion of acetazolamide with sodium nitrite inhalation did not further increase exhaled NO concentration over inhaled nitrite alone in pigs exposed to alveolar hypoxia.
View Article and Find Full Text PDFAdherence to low tidal volume (V) ventilation and selected positive end-expiratory pressures are low during mechanical ventilation for treatment of the acute respiratory distress syndrome. Using a pig model of severe lung injury, we tested the feasibility and physiological responses to a novel fully closed-loop mechanical ventilation algorithm based on the "open lung" concept. Lung injury was induced by surfactant washout in pigs (n = 8).
View Article and Find Full Text PDFVarious animal models of lung injury exist to study the complex pathomechanisms of human acute respiratory distress syndrome (ARDS) and evaluate future therapies. Severe lung injury with a reproducible deterioration of pulmonary gas exchange and hemodynamics can be induced in anesthetized pigs using repeated lung lavages with warmed 0.9% saline (50 ml/kg body weight).
View Article and Find Full Text PDFAnasthesiol Intensivmed Notfallmed Schmerzther
October 2013
Early weaning and discontinuation of mechanical ventilation can help prevent respiratory muscle dysfunction in critically ill patients. Prolonged mechanical ventilation and failure to use adequate strategies to discontinue mechanical ventilation can even enhance and perpetuate respiratory muscle dysfunction. On the other hand, premature attempts to extubate may result in re-intubation due to respiratory failure and are associated with poor outcomes and high mortality rates of up to 30-50%.
View Article and Find Full Text PDFBackground: Nitrite (NO2) is a physiologic source of nitric oxide and protects against ischemia-reperfusion injuries. We hypothesized that nitrite would be protective in a rat model of ventilator-induced lung injury and sought to determine if nitrite protection is mediated by enzymic catalytic reduction to nitric oxide.
Methods: Rats were anesthetized and mechanically ventilated.
Anasthesiol Intensivmed Notfallmed Schmerzther
January 2012
Introduction: Although inhalation of 80 parts per million (ppm) of hydrogen sulfide (H2S) reduces metabolism in mice, doses higher than 200 ppm of H2S were required to depress metabolism in rats. We therefore hypothesized that higher concentrations of H2S are required to reduce metabolism in larger mammals and humans. To avoid the potential pulmonary toxicity of H2S inhalation at high concentrations, we investigated whether administering H2S via ventilation of an extracorporeal membrane lung (ECML) would provide means to manipulate the metabolic rate in sheep.
View Article and Find Full Text PDF