Publications by authors named "Roland Benoit"

Reward improves memory through both encoding and consolidation processes. In this preregistered study, we tested whether reward effects on memory generalize from high-rewarded items to low-rewarded but episodically related items. Fifty-nine human volunteers incidentally encoded associations between unique objects and repeated scenes.

View Article and Find Full Text PDF

Atmospheric aerosol optical, physical, and chemical properties play a fundamental role in the Earth's climate system. A better understanding of the processes involved in their formation, evolution, and interaction with radiation and the water cycle is critical. We report the analysis of atmospheric molecules/particles collected with a new sampling system that flew under regular weather balloons for the first time.

View Article and Find Full Text PDF

Low-temperature experiments on the oxidation of limonene-O-N mixtures were conducted in a jet-stirred reactor (JSR) over a range of temperatures (520-800 K) under fuel-lean conditions (equivalence ratio φ = 0.5) with a short residence time (1.5 s) and a pressure of 1 bar.

View Article and Find Full Text PDF

Humans can vividly simulate hypothetical experiences. This ability draws on our memories (e.g.

View Article and Find Full Text PDF

Aversive events sometimes turn into intrusive memories. However, prior evidence indicates that such memories can be controlled via a mechanism of retrieval suppression. Here, we test the hypothesis that suppression exerts a sustained influence on memories by deteriorating their neural representations.

View Article and Find Full Text PDF

In the present study, we investigated the oxidation of 2500 ppm of di-n-butyl ether under fuel-rich conditions (φ = 2) at low temperatures (460-780 K), a residence time of 1 s, and 10 atm. The experiments were carried out in a fused silica jet-stirred reactor. Oxidation products were identified and quantified in gas samples by gas chromatography and Fourier transform infrared spectrometry.

View Article and Find Full Text PDF

Episodic future thinking (EFT) denotes our capacity to imagine prospective events. It has been suggested to promote farsighted decisions that entail a trade-off between short-term versus long-term gains. Here, we meta-analyze the evidence for the impact of EFT on such intertemporal choices that have monetary or health-relevant consequences.

View Article and Find Full Text PDF

It is still debated whether suppressing the retrieval of unwanted memories causes forgetting and whether this constitutes a beneficial mechanism. To shed light on these 2 questions, we scrutinize the evidence for such suppression-induced forgetting (SIF) and examine whether it is deficient in psychological disorders characterized by intrusive thoughts. Specifically, we performed a focused meta-analysis of studies that have used the procedure to test SIF in individuals either affected by psychological disorders or exhibiting high scores on related traits.

View Article and Find Full Text PDF

Data analysis workflows in many scientific domains have become increasingly complex and flexible. Here we assess the effect of this flexibility on the results of functional magnetic resonance imaging by asking 70 independent teams to analyse the same dataset, testing the same 9 ex-ante hypotheses. The flexibility of analytical approaches is exemplified by the fact that no two teams chose identical workflows to analyse the data.

View Article and Find Full Text PDF

Humans have the adaptive capacity for imagining hypothetical episodes. Such episodic simulation is based on a neural network that includes the ventromedial prefrontal cortex (vmPFC). This network draws on existing knowledge (e.

View Article and Find Full Text PDF

The episodic memory system allows us to experience the emotions of past, counterfactual, and prospective events. We outline how this phenomenological experience can convey motivational incentives for farsighted decisions. In this way, we challenge important arguments for Mahr & Csibra's (M&C's) conclusion that future-oriented mental time travel is unlikely to be a central function of episodic memory.

View Article and Find Full Text PDF

RhL complexes of phosphonate-derivatized 2,2'-bipyridine (bpy) ligands L were immobilized on titanium oxide particles generated in situ. Depending on the structure of the bipy ligand-number of tethers (1 or 2) to which the phosphonate end groups are attached and their location on the 2,2'-bipyridine backbone (4,4'-, 5,5'-, or 6,6'-positions)-the resulting supported catalysts showed comparable chemoselectivity but different kinetics for the hydrogenation of 6-methyl-5-hepten-2-one under hydrogen pressure. Characterization of the six supported catalysts suggested that the intrinsic geometry of each of the phosphonate-derivatized 2,2'-bipyridines leads to supported catalysts with different microstructures and different arrangements of the RhL species at the surface of the solid, which thereby affect their reactivity.

View Article and Find Full Text PDF

Episodic future thinking refers to the capacity to imagine or simulate experiences that might occur in one's personal future. Cognitive, neuropsychological, and neuroimaging research concerning episodic future thinking has accelerated during recent years. This article discusses research that has delineated cognitive and neural that support episodic future thinking as well as the that episodic future thinking serves.

View Article and Find Full Text PDF

Both the hippocampus and ventromedial prefrontal cortex (vmPFC) appear to be critical for episodic future simulation. Damage to either structure affects one's ability to remember the past and imagine the future, and both structures are commonly activated as part of a wider core network during future simulation. However, the precise role played by each of these structures and, indeed, the direction of information flow between them during episodic simulation, is still not well understood.

View Article and Find Full Text PDF

The hippocampus has been consistently associated with episodic simulation (i.e., the mental construction of a possible future episode).

View Article and Find Full Text PDF

Remembering the past and imagining the future both involve the retrieval of details stored in episodic memory and rely on the same core network of brain regions. Given these parallels, one might expect similar component processes to be involved in remembering and imagining. While a strong case can be made for the role of inhibition in memory retrieval, few studies have examined whether inhibition is also necessary for future imagining and results to-date have been mixed.

View Article and Find Full Text PDF

Imagining future events conveys adaptive benefits, yet recurrent simulations of feared situations may help to maintain anxiety. In two studies, we tested the hypothesis that people can attenuate future fears by suppressing anticipatory simulations of dreaded events. Participants repeatedly imagined upsetting episodes that they feared might happen to them and suppressed imaginings of other such events.

View Article and Find Full Text PDF

Different routes for preparing zirconium phosphonate-modified surfaces for immobilizing biomolecular probes are compared. Two chemical-modification approaches were explored to form self-assembled monolayers on commercially available primary amine-functionalized slides, and the resulting surfaces were compared to well-characterized zirconium phosphonate monolayer-modified supports prepared using Langmuir-Blodgett methods. When using POCl3 as the amine phosphorylating agent followed by treatment with zirconyl chloride, the result was not a zirconium-phosphonate monolayer, as commonly assumed in the literature, but rather the process gives adsorbed zirconium oxide/hydroxide species and to a lower extent adsorbed zirconium phosphate and/or phosphonate.

View Article and Find Full Text PDF

Simulations of future experiences are often emotionally arousing, and the tendency to repeatedly simulate negative future outcomes has been identified as a predictor of the onset of symptoms of anxiety. Nonetheless, next to nothing is known about how the healthy human brain processes repeated simulations of emotional future events. In this study, we present a paradigm that can be used to study repeated simulations of the emotional future in a manner that overcomes phenomenological confounds between positive and negative events.

View Article and Find Full Text PDF

It has been suggested that the simulation of hypothetical episodes and the recollection of past episodes are supported by fundamentally the same set of brain regions. The present article specifies this core network via Activation Likelihood Estimation (ALE). Specifically, a first meta-analysis revealed joint engagement of expected core-network regions during episodic memory and episodic simulation.

View Article and Find Full Text PDF
Article Synopsis
  • Rumination is when someone keeps thinking about the same thing over and over, which can make it hard for them to remember things well.
  • A study with 96 college students showed that when people ruminate, it can actually make it harder for them to "forget" things they want to stop thinking about.
  • Although ruminators might try to control their thoughts, their method of thinking about things still affects their memory in a way we need to learn more about.
View Article and Find Full Text PDF

Although the future often seems intangible, we can make it more concrete by imagining prospective events. Here, using functional MRI, we demonstrate a mechanism by which the ventromedial prefrontal cortex supports such episodic simulations, and thereby contributes to affective foresight: This region supports processes that (i) integrate knowledge related to the elements that constitute an episode and (ii) represent the episode's emergent affective quality. The ventromedial prefrontal cortex achieves such integration via interactions with distributed cortical regions that process the individual elements.

View Article and Find Full Text PDF

When reminded of unwanted memories, people often attempt to suppress these experiences from awareness. Prior work indicates that control processes mediated by the dorsolateral prefrontal cortex (DLPFC) modulate hippocampal activity during such retrieval suppression. It remains unknown whether this modulation plays a role in purging an intrusive memory from consciousness.

View Article and Find Full Text PDF

Suppressing unwanted memories can impair their later recall. Recent work shows that this forgetting is achieved by at least two mechanisms supported by distinct neural systems: thought substitution and direct suppression (Benoit & Anderson, 2012). Here, we examined whether direct suppression, thought to be achieved by down-regulation of hippocampal activity, can disrupt memory of aversive scenes, and, if so, whether this disruption is linked to people's perception of their ability to control intrusive thoughts.

View Article and Find Full Text PDF