Publications by authors named "Roland Beliard"

Antibody-based drugs are an increasingly important part of the therapeutic arsenal against a wide variety of medical conditions. As the number of commercial products and pipeline candidates grows, a crucial issue facing the industry is the current and future state of biomanufacturing. The productivity of the protein expression platforms, along with the performance of the technologies impacting upstream and downstream bioprocessing, are critical factors affecting the cost and time of therapeutic antibody development and commercialization.

View Article and Find Full Text PDF

Patients with chronic lymphocytic leukaemia (CLL) treated with a combination of fludarabine, cyclophosphamide and rituximab show a high response rate. However, only a poor response is observed following rituximab monotherapy. The use of chemo-immunotherapy is often associated with haematological and infectious complications.

View Article and Find Full Text PDF

A human anti-RhD immunoglobulin G1 monoclonal antibody (mAb), R297, was tested in a phase I study to assess its ability to induce the clearance of antibody-coated autologous RhD+ red blood cells (RBCs) in healthy male volunteers. The clearance potency of R297 was compared with that of a marketed human polyclonal anti-D product (Rhophylac). This mAb has been selected for its ability to strongly engage Fc-gamma receptor IIIA and to mediate a potent antibody-dependent cell cytotoxicity (ADCC) against RhD+ RBCs.

View Article and Find Full Text PDF

The substitution of plasmatic anti-RhD polyclonal antibodies by a monoclonal antibody (mAb) for preventing the hemolytic disease of the newborn (HDN) is an important issue due to supply and safety concerns. Since it has been suggested that FcgammaR are involved in the prevention of HDN, the in vitro functional properties of two anti-RhD mAbs differing through their glycosylation profiles were compared using FcgammaR-based assays to select a candidate mAb. T125(YB2/0), a low fucosylated antibody, bound strongly to both activating FcgammaRIII and inhibitory FcgammaRII, as opposed to its highly fucosylated counterpart.

View Article and Find Full Text PDF