Crystal defects present in GaAs nanocrystals ∼15-50 nm in diameter and grown by metal organic vapor phase epitaxy on top of two different nanopatterned Si(001) substrates (nanopillars and nanotips with ∼40-80 nm openings embedded in a SiO matrix) and on a planar substrate, have been investigated by means of atomic-resolution aberration-corrected scanning transmission electron microscopy. Conditions of their formation are discussed. The defect analysis of the three GaAs/Si systems reveals a higher defect density in the GaAs crystals grown on nanopillars as compared to those grown on nanotips and the planar substrate, possibly concomitant to the atomic-scale irregularities identified at the patterned Si(001) nanopillars.
View Article and Find Full Text PDFThe early growth stage of GaAs by metal organic vapor phase epitaxy on a novel kind of Si substrate is investigated. The substrate consists of nanotips (NTs) fabricated on a Si(001) wafer by means of lithography and reactive ion etching. 3D GaAs nanocrystals are found to nucleate with a probability of 90% on the (n0m), (-n0m), (0nm), and (0-nm) facets (n, m integers) of these NTs.
View Article and Find Full Text PDFNano-heteroepitaxial growth of GaAs on Si(001) by metal organic vapor phase epitaxy was investigated to study emerging materials phenomena on the nano-scale of III-V/Si interaction. Arrays of Si nano-tips (NTs) embedded in a SiO matrix were used as substrates. The NTs had top Si openings of 50-90 nm serving as seeds for the selective growth of GaAs nano-crystals (NCs).
View Article and Find Full Text PDFWe present the nanoheteroepitaxial growth of gallium arsenide (GaAs) on nano-patterned silicon (Si) (001) substrates fabricated using a CMOS technology compatible process. The selective growth of GaAs nano-crystals (NCs) was achieved at 570 °C by MOVPE. A detailed structure and defect characterization study of the grown nano-heterostructures was performed using scanning transmission electron microscopy, x-ray diffraction, micro-Raman, and micro-photoluminescence (μ-PL) spectroscopy.
View Article and Find Full Text PDFThe development of new electro-optical devices and the realization of novel types of transistors require a profound understanding of the structural characteristics of new semiconductor heterostructures. This article provides a concise review about structural defects which occur in semiconductor heterostructures on the basis of micro-patterned Si substrates. In particular, one- and two-dimensional crystal defects are being discussed which are due to the plastic relaxation of epitaxial strain caused by the misfit of crystal lattices.
View Article and Find Full Text PDFActa Crystallogr Sect E Struct Rep Online
December 2014
A single crystal of the title compound, the ternary silicide digadolinium trirhenium penta-silicide, Gd2Re3Si5, was isolated from an alloy of nominal composition Gd20Re30Si50 synthesized by arc melting and investigated by X-ray single-crystal diffraction. Its crystal structure belongs to the U2Mn3Si5 structure type. All atoms in the asymmetric lie on special positions.
View Article and Find Full Text PDF