H and F spin-lattice relaxation experiments have been performed for a series of ionic liquids: [HMIM][TFSI], [OMIM][TFSI], and [DMIM][TFSI] including the same anion and cations with progressively longer alkyl chains. The experiments were performed in a wide frequency range from 10 kHz to 10 MHz (referring to the H resonance frequency) versus temperature. This extensive data set has been analyzed in terms of a theoretical model including all relevant homonuclear (H-H and F-F) and heteronuclear (H-F) relaxation pathways and linking the relaxation features to the relative translational diffusion between the ion pairs (cation-cation, cation-anion, and anion-anion).
View Article and Find Full Text PDFThis paper presents a comprehensive overview of the spin relaxation theory needed for exploring nuclear magnetic resonance (NMR) relaxometry to study the dynamical properties of ionic liquids. The term NMR relaxometry refers to relaxation experiments performed over a wide range of magnetic fields (resonance frequencies). In this way, dynamical processes occurring on timescales from milliseconds to nanoseconds can be studied, including translational and rotational dynamics of both types of ions (cations and anions).
View Article and Find Full Text PDFIn this study, we investigated whether brain-to-brain coupling patterns could predict performance in a time-estimation task that requires two players to cooperate. The participant pairs were tasked with synchronizing button presses after converging on a shared representation of "short," "medium," and "long" time intervals while utilizing feedback to adjust responses. We employed electroencephalogram (EEG)-hyperscanning and focused on post-feedback brain activity.
View Article and Find Full Text PDFPurpose: Breast cancer (BC) is the most common malignant tumor in women, which most often originates from the epithelial tissue of the breast gland. One of the most recommended kinds of treatment is radiotherapy (RT), but irradiation (IR) can affect not only the cancer tumor but also the healthy tissue around it. Au nanoparticles (AuNPs) were proposed as a radiosensitizing agent for RT which would allow for lower radiation doses, reducing the negative radiation effects on healthy tissues.
View Article and Find Full Text PDFWe investigated the relationship between Theory of Mind (ToM) and communicative cooperation. Specifically, we examined whether communicative cooperation is affected by the ToM ability of one's cooperative partner as well as their own. ToM is the attribution of mental states to oneself and others; cooperation is the joint action that leads to achieving a shared goal.
View Article and Find Full Text PDFGold nanoparticles (AuNPs), as an agent enhancing radiosensitivity, play a key role in the potential treatment of breast cancer (BC). Assessing and understanding the kinetics of modern drug delivery systems is a crucial element that allows the implementation of AuNPs in clinical treatment. The main objective of the study was to assess the role of the properties of gold nanoparticles in the response of BC cells to ionizing radiation by comparing 2D and 3D models.
View Article and Find Full Text PDFComplex cognitive tasks require different stages of processing (i.e. conflict monitoring, attentional resource allocation and stimulus categorisation).
View Article and Find Full Text PDFThis article describes how crystalline or fibrous nanocellulose influences the mechanical properties of paper substrate. In this context, we used commercially available cellulose nanocrystals, mechanically prepared cellulose nanofibers dispersed in water or ethanol, and carboxy cellulose nanofibers. Selective reinforcement of the paper treated with the nanocellulose samples mentioned above was observed.
View Article and Find Full Text PDFF Nuclear Magnetic Resonance spin-lattice relaxation experiments have been performed for a series of ionic liquids including the same anion, bis(trifluoromethanesulfonyl)imide, and cations with alkyl chains of different lengths: triethylhexylammonium, triethyloctylammonium decyltriethylammonium, dodecyltriethylammonium, decyltriethylammonium, and hexadecyltriethylammonium. The experiments have been carried out in a frequency range of 10 kHz to 10 MHz versus temperature. A thorough analysis of the relaxation data has led to the determination of the cation-anion as a relative translation diffusion coefficient.
View Article and Find Full Text PDFStarch-based confectionery products were prepared using different types of sugar. In addition to using different sugar, starch was replaced with soy protein isolate (SPI) in some of the products. H NMR spin-lattice relaxation experiments were performed for the collection of products in a broad frequency range from 4 KHz to 30 MHz to get insight into the influence of different sugar types and SPI on the dynamics of water in composite gel systems.
View Article and Find Full Text PDFMeasurement of the nitric oxide (NO) concentration in living cells in the physiological nanomolar range is crucial in understanding NO biochemical functions, as well as in characterizing the efficiency and kinetics of NO delivery by NO-releasing drugs. Here, we show that fluorescence correlation spectroscopy (FCS) is perfectly suited for these purposes, due to its sensitivity, selectivity, and spatial resolution. Using the fluorescent indicators, diaminofluoresceins (DAFs), and FCS, we measured the NO concentrations in NO-producing living human primary endothelial cells, as well as NO delivery kinetics, by an external NO donor to the immortal human epithelial living cells.
View Article and Find Full Text PDFH spin-lattice relaxation experiments have been performed for a series of ionic liquids including bis(trifluoromethanesulfonyl)imide anion and cations of a varying alkyl chain length: triethylhexylammonium, triethyloctylammonium, decyltriethylammonium, dodecyltriethylammonium, triethyltetradecylammonium, and hexadecyltriethylammonium. The relaxation studies were carried out in abroad frequency range covering three orders of magnitude, from 10 kHz to 10 MHz, versus temperature. On the basis of a thorough, quantitative analysis of this reach data set, parameters characterizing the relative, cation-cation, translation diffusion (relative diffusion coefficients and translational correlation times), and rotational motion of the cation (rotational correlation times) were determined.
View Article and Find Full Text PDFH and F spin-lattice relaxation experiments have been performed for a series of ionic liquids sharing the same anion: bis(trifluoromethanesulfonyl)imide but including cations of different alkyl chain lengths: butyltriethylammonium, triethyloctylammonium, dodecyltriethylammo-nium and hexadecyltriethylammonium. The studies have been carried out in the temperature range from 383 to 108 K at the resonance frequency of 200 MHz (for H). A quantitative analysis of the relaxation data has revealed two dynamical processes for both kinds of ions.
View Article and Find Full Text PDFSemantic binding refers to constructing complex meaning based on elementary building blocks. Using electroencephalography (EEG), we investigated the age-related changes in modulations of oscillatory brain activity supporting lexical retrieval and semantic binding. Young and older adult participants were visually presented two-word phrases, which for the first word revealed a lexical retrieval signature (e.
View Article and Find Full Text PDFProduction of ethanol from lignocellulosic biomass is considered the most promising proposition for developing a sustainable and carbon-neutral energy system. The use of renewable raw materials and variability of lignocellulosic feedstock generating hexose and pentose sugars also brings advantages of the most abundant, sustainable and non-food competitive biomass. Great attention is now paid to agricultural wastes and overgrowing plants as an alternative to fast-growing energetic crops.
View Article and Find Full Text PDFH and F spin-lattice relaxation experiments have been performed for butyltriethylammonium bis(trifluoromethanesulfonyl)imide in the temperature range from 258 to 298 K and the frequency range from 10 kHz to 10 MHz. The results have thoroughly been analysed in terms of a relaxation model taking into account relaxation pathways associated with H-H, F-F and H-F dipole-dipole interactions, rendering relative translational diffusion coefficients for the pairs of ions: cation-cation, anion-anion and cation-anion, as well as the rotational correlation time of the cation. The relevance of the H-F relaxation contribution to the H and F relaxation has been demonstrated.
View Article and Find Full Text PDFThe application of ionic liquids (ILs) has grown enormously, from their use as simple solvents, catalysts, media in separation science, or electrolytes to that as task-specific, tunable molecular machines with appropriate properties. A thorough understanding of these properties and structure-property relationships is needed to fully exploit their potential, open new directions in IL-based research and, finally, properly implement the appropriate applications. In this work, we investigated the structure-properties relationships of a series of alkyltriethylammonium bis(trifluoromethanesulfonyl)imide [TEA-R][TFSI] ionic liquids in relation to their thermal behavior, structure organization, and self-diffusion coefficients in the bulk state using DSC, FT-IR, SAXS, and NMR diffusometry techniques.
View Article and Find Full Text PDFIn this work, we show synthesis that leads to thermoreponsive poly-N-isopropyl acrylamide (pNIPAM) nanogels with sizes below 100 nm, irrespectively of the surfactant to crosslinker ratio. We also show that in many environments the temperature induced pNIPAM collapse at Lower Critical Solution Temperature (LCST) of 32.5 °C is accompanied by gel nanoparticles' aggregation.
View Article and Find Full Text PDFPolydopamine (PDA)-coated magnetic nanoparticles functionalized with mono-6-thio-β-cyclodextrin (SH-βCD) were obtained and characterized by transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), Nuclear and Magnetic Resonance Imaging (NMR and MRI), and doxorubicin (DOXO)-loading experiments. The liver cancer cellular internalization of DOXO-loaded nanoparticles was investigated by confocal imaging microscopy. Synthesized nanomaterials bearing a chemotherapeutic drug and a layer of polydopamine capable of absorbing near-infrared light show high performance in the combined chemo- and photothermal therapy (CT-PTT) of liver cancer due to the synergistic effect of both modalities as demonstrated in vitro.
View Article and Find Full Text PDF