Publications by authors named "Rokos H"

Vitiligo is characterized by a progressive loss of inherited skin color. The cause of the disease is still unknown. To date, there is accumulating in vivo and in vitro evidence for massive oxidative stress via hydrogen peroxide (H(2)O(2)) and peroxynitrite (ONOO(-)) in the skin of affected individuals.

View Article and Find Full Text PDF

The biochemistry of hair pigmentation is a complex field involving a plethora of protein and peptide mechanisms. The in loco factory for melanin formation is the hair follicle melanocyte, but it is common knowledge that melanogenesis results from a fine tuned concerted interaction between the cells of the entire dermal papilla in the anagen hair follicle. The key enzyme is tyrosinase to initiate the active pigmentation machinery.

View Article and Find Full Text PDF

Piebaldism is characterised by the absence of pigment in patches on the skin, usually present at birth. Mutations in the kit gene are documented. Clinically this disorder can mimic vitiligo.

View Article and Find Full Text PDF

Cholesterol is important for membrane stability and is the key substrate for the synthesis of steroid hormones and vitamin D. Furthermore, it is a major component of the lipid barrier in the stratum corneum of the human epidermis. Considering that steroid hormone synthesis is taking place in epidermal melanocytes, we tested whether downstream oestrogen receptor/cAMP signalling via MITF/tyrosine hydroxylase/tyrosinase/pigmentation could be possibly modulated by cholesterol.

View Article and Find Full Text PDF

Senile graying of human hair has been the subject of intense research since ancient times. Reactive oxygen species have been implicated in hair follicle melanocyte apoptosis and DNA damage. Here we show for the first time by FT-Raman spectroscopy in vivo that human gray/white scalp hair shafts accumulate hydrogen peroxide (H(2)O(2)) in millimolar concentrations.

View Article and Find Full Text PDF

Patients with vitiligo accumulate up to 10(-3) mol/L concentrations of H(2)O(2) in their epidermis, which in turn affects many metabolic pathways in this compartment, including the synthesis and recycling of the cofactor (6R)-L-erythro-5,6,7,8-tetrahydrobiopterin (6BH(4)). De novo synthesis of 6BH(4) is dependent on the rate-limiting enzyme GTP cyclohydrolase I (GTPCHI) together with its feedback regulatory protein (GFRP). This step is controlled by 6BH(4) and the essential amino acid L-phenylalanine.

View Article and Find Full Text PDF

Xanthine dehydrogenase/xanthine oxidase (XDH/XO) catalyses the hydroxylation of hypoxanthine to xanthine and finally to uric acid in purine degradation. These reactions generate H(2)O(2) yielding allantoin from uric acid when reactive oxygen species accumulates. The presence of XO in the human epidermis has not been shown so far.

View Article and Find Full Text PDF

Quinones are potentially dangerous substances generated from quinols via the intermediates semiquinone and hydrogen peroxide. Low semiquinone radical concentrations are acting as radical scavengers while high concentrations produce reactive oxygen species and quinones, leading to oxidative stress, apoptosis, and/or DNA damage. Recently it was recognised that thioredoxin reductase/thioredoxin (TR/T) reduces both p- and o-quinones.

View Article and Find Full Text PDF

Patients with the depigmentation disorder vitiligo have low catalase expression/activities and constantly accumulate 10(-3) M hydrogen peroxide (H(2)O(2)) in their skin. Such high concentrations of H(2)O(2) oxidize L-methionine residues in proteins and peptides to (R and S)-methionine sulfoxide diasteriomers. In vivo FT-Raman Spectroscopy revealed the presence of methionine sulfoxide in the depigmented skin of patients with active vitiligo.

View Article and Find Full Text PDF

We report about a female patient with bilateral and unilateral blaschkolinear depigmentation on the extremities and coexistence of acrofacial vitiligo, who initially presented her first signs of depigmentation at the age of 32 years. The patient was otherwise healthy. The correct diagnosis was based on the latest up to date technology utilizing in vivo FT-Raman and Fluorescence spectroscopy, Wood's light examination of the depigmented skin and immunoreactivity of epidermal catalase expression in 3 mm punch biopsies from the linear depigmented area.

View Article and Find Full Text PDF

The human epidermis is especially vulnerable to oxidative stress, which in turn leads to oxidation of important antioxidant enzymes, other proteins, and peptides. Molecular dynamic computer modelling is a new powerful tool to predict or confirm oxidative stress-mediated structural changes consequently altering the function of enzymes/proteins/peptides. Here we used examples of important epidermal antioxidant enzymes before and after hydrogen peroxide (H(2)O(2))-mediated oxidation of susceptible amino-acid residues (i.

View Article and Find Full Text PDF

The human epidermis holds the capacity for autocrine cholinergic signal transduction, but the presence of butyrylcholinesterase (BchE) has not been shown so far. Our results demonstrate that this compartment transcribes a functional BchE. Its activity is even higher compared to acetylcholinesterase (AchE).

View Article and Find Full Text PDF

The human skin holds the capacity for autocrine processing of the proopiomelanocortin (POMC)-derived peptides. Recent data demonstrated the presence and functionality of ACTH, alpha- and beta-melanocyte-stimulating hormone (MSH), and beta-endorphin in the regulation of skin pigmentation, and a role has been put forward for alpha-MSH as an effective antioxidant. In patients with vitiligo, decreased epidermal POMC processing and low alpha-MSH levels were documented previously.

View Article and Find Full Text PDF

(6R)-L-erythro 5,6,7,8 tetrahydrobiopterin (6BH4) is crucial in the hydroxylation of L-phenylalanine-, L-tyrosine-, and L-tryptophan-regulating catecholamine and serotonin synthesis as well as tyrosinase in melanogenesis. The rate-limiting step of 6BH4 de novo synthesis is controlled by guanosine triphosphate (GTP) cyclohydrolase I (GTPCHI) and its feedback regulatory protein (GFRP), where binding of L-phenylalanine to GFRP increases enzyme activities, while 6BH4 exerts the opposite effect. Earlier it was demonstrated that the human epidermis holds the full capacity for autocrine 6BH4 de novo synthesis and recycling.

View Article and Find Full Text PDF

To date there is ample in vivo and in vitro evidence for increased epidermal and systemic hydrogen peroxide (H(2)O(2)) levels in vitiligo, which can be reduced with a topical application of a pseudocatalase-K.U. Schallreuter (PC-KUS) leading to the recovery of epidermal catalase levels as well as other enzymes in peripheral blood cells.

View Article and Find Full Text PDF

The human skin holds the full machinery for pro-opiomelanocortin processing. The alpha-melanocyte-stimulating hormone (alpha-MSH)/melanocortin-1-receptor cascade has been implicated as a major player via the cAMP signal in the control of melanogenesis. Only very recently the beta-endorphin/mu-opiate receptor signal has been added to the list of regulators of melanocyte dendricity and melanin formation.

View Article and Find Full Text PDF

The human epidermis has the full machinery for autocrine L-phenylalanine turnover to L-tyrosine in keratinocytes and melanocytes. Phenylalanine hydroxylase (PAH) activities increase linearly with inherited skin colour (skin phototype I-VI, Fitzpatrick classification) yielding eightfold more activities in black skin compared to white skin. Moreover, UVB irradiation (1 MED) significantly increases epidermal PAH activities 24 h after exposure.

View Article and Find Full Text PDF

The presence of albumin in the human epidermis has been reported more than a decade ago, but until now, it was assumed that this protein is synthesized in the liver and transported to the avascular skin. To our knowledge, transcription of albumin in the human epidermis was never considered. In this report, we present for the first time evidence for autocrine synthesis of albumin in the human epidermis in keratinocytes in situ and in vitro.

View Article and Find Full Text PDF

To date there is ample evidence that patients with vitiligo accumulate millimolar concentrations of hydrogen peroxide (H2O2) in their epidermis as well as in their blood lymphocytes/monocytes. Several enzymes are affected by this H2O2 including catalase, glutathione peroxidase, and 4 alpha-carbinolamine dehydratase. The latter enzyme disrupts the recycling of the essential cofactor (6R)-L-erythro-5,6,7,8-tetrahydrobiopterin (6BH4) for the aromatic amino acid hydroxylases as well as the nitric oxide synthases.

View Article and Find Full Text PDF

Previously it has been demonstrated that the human epidermis synthesises and degrades acetylcholine and expresses both muscarinic and nicotinic receptors. These cholinergic systems have been implicated in the development of the epidermal calcium gradient and differentiation in normal healthy skin. In vitiligo severe oxidative stress occurs in the epidermis of these patients with accumulation of H2O2 in the 10(-3)M range together with a decrease in catalase expression/activity due to deactivation of the enzyme active site.

View Article and Find Full Text PDF

Both halo naevus and vitiligo are acquired leucodermas of unknown aetiology. To date a significant contribution of oxidative stress through accumulation of hydrogen peroxide (H2O2) has been documented in the pathomechanism of vitiligo but not in halo naevus. Both epidermal pterin-4a-carbinolamine dehydratase (PCD) and catalase are sensitive markers to follow H2O2 concentration-dependent deactivation of these proteins.

View Article and Find Full Text PDF

Patients with vitiligo accumulate millimolar levels of H(2)O(2) in their epidermis. The recycling process of (6R)-l-erythro-5,6,7,8-tetrahydrobiopterin in these patients is disrupted due to deactivation of 4a-OH-BH(4) dehydratase by H(2)O(2). The H(2)O(2) oxidation products 6- and 7-biopterin lead to the characteristic fluorescence of the affected skin upon Wood's light examination (UVA 351 nm).

View Article and Find Full Text PDF