Publications by authors named "Rokeya Tasneen"

Isoniazid is an important first-line medicine to treat tuberculosis (TB). Isoniazid resistance increases the risk of poor treatment outcomes and development of multidrug resistance, and is driven primarily by mutations involving , encoding the prodrug-activating enzyme, rather than its validated target, InhA. The chemical tractability of InhA has fostered efforts to discover direct inhibitors of InhA (DIIs).

View Article and Find Full Text PDF

Unlabelled: Mtb) is one of the leading infectious causes of death worldwide. There is no available licensed therapeutic vaccine that shortens active tuberculosis (TB) disease drug treatment and prevents relapse, despite the World Health Organization's calls. Here, we show that an intranasal DNA vaccine containing a fusion of the stringent response gene with the gene encoding the immature dendritic cell-targeting chemokine, MIP-3α/CCL20, shortens the duration of curative TB treatment in immunocompetent mice.

View Article and Find Full Text PDF

TBI-223, a novel oxazolidinone for tuberculosis, is designed to provide improved efficacy and safety compared to linezolid in combination with bedaquiline and pretomanid (BPaL). We aim to optimize the dosing of TBI-223 within the BPaL regimen for enhanced therapeutic outcomes. TBI-223 is investigated in preclinical monotherapy, multidrug therapy, and lesion penetration experiments to describe its efficacy and safety versus linezolid.

View Article and Find Full Text PDF

A significant challenge in the development of long-acting injectable drug formulations, especially for anti-infective agents, is delivering an efficacious dose within a tolerable injection volume. Co-administration of the extracellular matrix-degrading enzyme hyaluronidase can increase maximum tolerable injection volumes but is untested for this benefit with long-acting injectable formulations. One concern is that hyaluronidase could potentially alter the tissue response surrounding an injection depot, a response known to be important for drug release kinetics of long-acting injectable formulations.

View Article and Find Full Text PDF

Prenatal arsenic exposure is a major public health concern, associated with altered birth outcomes and increased respiratory disease risk. However, characterization of the long-term effects of mid-pregnancy (second trimester) arsenic exposure on multiple organ systems is scant. This study aimed to characterize the long-term impact of mid-pregnancy inorganic arsenic exposure on the lung, heart, and immune system, including infectious disease response using the C57BL/6 mouse model.

View Article and Find Full Text PDF
Article Synopsis
  • Treating tuberculosis (TB) takes a long time because some germs can hide from medicines, so researchers are trying new ways to help fight it.
  • They created a special DNA vaccine that helps the immune system target the TB germs better, using a method that involves delivering it through the nose.
  • Their tests showed that this new vaccine worked really well, helping reduce the number of TB germs much more than traditional methods on their own, which could make curing TB faster and could be used for other stubborn infections too!
View Article and Find Full Text PDF

As a result of a high-throughput compound screening campaign using Mycobacterium tuberculosis-infected macrophages, a new drug candidate for the treatment of tuberculosis has been identified. GSK2556286 inhibits growth within human macrophages (50% inhibitory concentration [IC] = 0.07 μM), is active against extracellular bacteria in cholesterol-containing culture medium, and exhibits no cross-resistance with known antitubercular drugs.

View Article and Find Full Text PDF

A recent landmark trial showed a 4-month regimen of rifapentine, pyrazinamide, moxifloxacin, and isoniazid (PZMH) to be noninferior to the 6-month standard of care. Here, two murine models of tuberculosis were used to test whether novel regimens replacing rifapentine and isoniazid with bedaquiline and another drug would maintain or increase the sterilizing activity of the regimen. In BALB/c mice, replacing rifapentine in the PZM backbone with bedaquiline (i.

View Article and Find Full Text PDF

Murine tuberculosis drug efficacy studies have historically monitored bacterial burden based on CFU of Mycobacterium tuberculosis in lung homogenate. In an alternative approach, a recently described molecular pharmacodynamic marker called the RS ratio quantifies drug effect on a fundamental cellular process, ongoing rRNA synthesis. Here, we evaluated the ability of different pharmacodynamic markers to distinguish between treatments in three BALB/c mouse experiments at two institutions.

View Article and Find Full Text PDF

Completion of preventive therapy is a major bottleneck in global tuberculosis control. Long-acting injectable drug formulations would shorten therapy administration and may thereby improve completion rates. Recently, a long-acting formulation of bedaquiline demonstrated antituberculosis activity for up to 12 weeks after injection in a validated mouse model of preventive therapy.

View Article and Find Full Text PDF

Efforts to develop more effective and shorter-course therapies for tuberculosis have included a focus on host-directed therapy (HDT). The goal of HDT is to modulate the host response to infection, thereby improving immune defenses to reduce the duration of antibacterial therapy and/or the amount of lung damage. As a mediator of innate and adaptive immune responses involved in eliminating intracellular pathogens, autophagy is a potential target for HDT in tuberculosis.

View Article and Find Full Text PDF

The novel regimen of bedaquiline, pretomanid, and linezolid (BPaL) is highly effective against drug-resistant tuberculosis, but linezolid toxicities are frequent. We hypothesized that, for a similar total weekly cumulative dose, thrice-weekly administration of linezolid would preserve efficacy while reducing toxicity compared with daily dosing, in the context of the BPaL regimen. Using C3HeB/FeJ and BALB/c mouse models of tuberculosis disease, thrice-weekly linezolid dosing was compared with daily dosing, with intermittent dosing introduced (i) from treatment initiation or (ii) after an initial period of daily dosing.

View Article and Find Full Text PDF

Telacebec (Q203) is a new antitubercular drug with extremely potent activity against Here, we explored the treatment-shortening potential of Q203 alone or in combination with rifampin (RIF) in a mouse footpad infection model. The first study compared Q203 at 5 and 10 mg/kg doses alone and with rifampin. Q203 alone rendered most mouse footpads culture negative in 2 weeks.

View Article and Find Full Text PDF

Tuberculosis (TB) drug, regimen, and vaccine development rely heavily on preclinical animal experiments, and quantification of bacterial and immune response dynamics is essential for understanding drug and vaccine efficacy. A mechanism-based model was built to describe H37Rv infection over time in BALB/c and athymic nude mice, which consisted of bacterial replication, bacterial death, and adaptive immune effects. The adaptive immune effect was best described by a sigmoidal function on both bacterial load and incubation time.

View Article and Find Full Text PDF

Indole-2-carboxamide derivatives are inhibitors of MmpL3, the cell wall-associated mycolic acid transporter of In the present study, we characterized indoleamide effects on bacterial cell morphology and reevaluated pharmacokinetics and efficacy using an optimized oral formulation. Morphologically, indoleamide-treated cells demonstrated significantly higher numbers of dimples near the poles or septum, which may serve as the mechanism of cell death for this bactericidal scaffold. Using the optimized formulation, an expanded-spectrum indoleamide, compound 2, showed significantly improved pharmacokinetic (PK) parameters and efficacy in mouse infection models.

View Article and Find Full Text PDF

Clofazimine and high-dose rifapentine have each separately been associated with treatment-shortening activity when incorporated into tuberculosis (TB) treatment regimens. We hypothesized that both modifications, i.e.

View Article and Find Full Text PDF

Novel regimens combining bedaquiline and pretomanid with either linezolid (BPaL regimen) or moxifloxacin and pyrazinamide (BPaMZ regimen) shorten the treatment duration needed to cure tuberculosis (TB) in BALB/c mice compared to that of the first-line regimen and have yielded promising results in initial clinical trials. However, the independent contribution of the investigational new drug pretomanid to the efficacy of BPaMZ has not been examined, and its contribution to BPaL has been examined only over the first 2 months of treatment. In the present study, the addition of pretomanid to BL increased bactericidal activity, prevented emergence of bedaquiline resistance, and shortened the duration needed to prevent relapse with drug-susceptible isolates by at least 2 months in BALB/c mice.

View Article and Find Full Text PDF

The antileprosy drug clofazimine was recently repurposed as part of a newly endorsed short-course regimen for multidrug-resistant tuberculosis. It also enables significant treatment shortening when added to the first-line regimen for drug-susceptible tuberculosis in a mouse model. However, clofazimine causes dose- and duration-dependent skin discoloration in patients, and the optimal clofazimine dosing strategy in the context of the first-line regimen is unknown.

View Article and Find Full Text PDF

Drug efflux pumps play important roles in intrinsic and acquired drug resistance. Verapamil, an efflux inhibitor that enhances the activity of bedaquiline, clofazimine, and other drugs against , has been proposed as a potential adjunctive agent for treatment of tuberculosis (TB). However, the extent to which verapamil enhances efficacy by inhibiting bacterial efflux pumps versus inhibiting mammalian drug transporters to improve oral bioavailability has not been delineated.

View Article and Find Full Text PDF

More-permissive preclinical models may be useful in evaluating antituberculosis regimens for their propensity to select drug-resistant mutants. To evaluate whether acquired rifamycin monoresistance could be recapitulated in mice and, if so, to evaluate the effects of immunodeficiency, intermittent dosing, and drug exposures, athymic nude and BALB/c mice were infected. Controls received daily rifapentine alone or 2 months of rifampin, isoniazid, pyrazinamide, and ethambutol, followed by 4 months of rifampin/isoniazid, either daily or twice weekly with one of two isoniazid doses.

View Article and Find Full Text PDF

New regimens based on 2 or more novel agents are sought to shorten or to simplify treatment of tuberculosis (TB), including drug-resistant forms. Prior studies showed that the novel combinations of bedaquiline (BDQ) plus pretomanid (PMD) plus pyrazinamide (PZA) and PMD plus moxifloxacin (MXF) plus PZA shortened the treatment duration necessary to prevent relapse by 2 to 3 months and 1 to 2 months, respectively, compared with the current first-line regimen, in a murine TB model. These 3-drug combinations are now being studied in clinical trials.

View Article and Find Full Text PDF
Article Synopsis
  • Biapenem, a carbapenem antibiotic, has shown potential synergistic effects when used with rifampicin against Mycobacterium tuberculosis, including strains resistant to rifampicin.
  • The study aimed to assess the effectiveness of biapenem/rifampicin combinations on low- and high-level rifampicin-resistant strains, testing both in laboratory settings and mouse models.
  • Results indicated that while biapenem worked well in conjunction with rifampicin against drug-sensitive strains, the synergy was not observed in rifampicin-resistant strains, highlighting biapenem's potential as a new treatment option for drug-resistant TB.
View Article and Find Full Text PDF

Through mutant selection on agar containing pyrazinoic acid (POA), the bioactive form of the prodrug pyrazinamide (PZA), we recently showed that missense mutations in the aspartate decarboxylase PanD and the unfoldase ClpC1, and loss-of-function mutation of polyketide synthases Mas and PpsA-E involved in phthiocerol dimycocerosate synthesis, cause resistance to POA and PZA in Mycobacterium tuberculosis. Here we first asked whether these in vitro-selected POA/PZA-resistant mutants are attenuated in vivo, to potentially explain the lack of evidence of these mutations among PZA-resistant clinical isolates. Infection of mice with panD, clpC1, and mas/ppsA-E mutants showed that whereas growth of clpC1 and mas/ppsA-E mutants was attenuated, the panD mutant grew as well as the wild-type.

View Article and Find Full Text PDF

Cavitation is a key pathological feature of human tuberculosis (TB), and is a well-recognized risk factor for transmission of infection, relapse after treatment and the emergence of drug resistance. Despite intense interest in the mechanisms underlying cavitation and its negative impact on treatment outcomes, there has been limited study of this phenomenon, owing in large part to the limitations of existing animal models. Although cavitation does not occur in conventional mouse strains after infection with Mycobacterium tuberculosis, cavitary lung lesions have occasionally been observed in C3HeB/FeJ mice.

View Article and Find Full Text PDF