Front Bioeng Biotechnol
August 2023
Obtaining sufficient numbers of cells in a short time is a major goal of cell culturing in cell therapy and tissue engineering. However, current bidimensional (2D) culture methods are associated to several limitations, including low efficiency and the loss of key cell differentiation markers on cultured cells. In the present work, we have designed a novel biofabrication method based on a three-dimensional (3D) culture system (FIBRIAGAR-3D).
View Article and Find Full Text PDFRev Esp Salud Publica
March 2023
Objective: It is important to understand the impact of the COVID-19 pandemic on incremental innovation and its protection through industrial property rights, in order to acquiring valuable insights to develop effective public policies and corporate strategies. The objective was to analyze incremental innovations in response to the pandemic that have been protected by industrial property rights, and to examine whether the COVID-19 pandemic had a positive or negative effect on incremental innovation, promoting or inhibiting it.
Methods: Utility models in the health patent class have been used as indicators (01.
Blindness due to corneal diseases is a common pathology affecting up to 23 million individuals worldwide. The tissue-engineered anterior human cornea, which is currently being tested in a Phase I/II clinical trial to treat severe corneal trophic ulcers with preliminary good feasibility and safety results. This bioartificial cornea is based on a nanostructured fibrin-agarose biomaterial containing human allogeneic stromal keratocytes and cornea epithelial cells, mimicking the human native anterior cornea in terms of optical, mechanical, and biological behavior.
View Article and Find Full Text PDFBackground: The bacterial Hfq protein is able to interact with diverse RNA molecules, including regulatory small non-coding RNAs (sRNAs), and thus it is recognized as a global post-transcriptional regulator of gene expression. Loss of Hfq has an extensive impact in bacterial physiology which in several animal pathogens influences virulence. Sinorhizobium meliloti is a model soil bacterium known for its ability to establish a beneficial nitrogen-fixing intracellular symbiosis with alfalfa.
View Article and Find Full Text PDFRhizoremediation of organic chemicals requires high-level expression of biodegradation genes in bacterial strains that are excellent rhizosphere colonizers. Pseudomonas fluorescens F113 is a biocontrol strain that was shown to be an excellent colonizer of numerous plant rhizospheres, including alfalfa. Although a derivative of F113 expressing polychlorinated biphenyl (PCB) biodegradation genes (F113pcb) has been reported previously, this strain shows a low level of bph gene expression, limiting its rhizoremediation potential.
View Article and Find Full Text PDFWhen grown under standard conditions, Sinorhizobium meliloti EFB1 simultaneously produces two acidic exopolysaccharides, succinoglycan and galactoglucan, yielding very mucoid colonies. In this strain, MucR is essential for galactoglucan synthesis. A mutation in the mucS gene resulted in less mucoid colonies than in the wild-type EFB1.
View Article and Find Full Text PDF