Expansion of the microfluidics field dictates the necessity to constantly improve technologies used to produce such systems. One of the approaches which are used more and more is femtosecond (fs) direct laser writing (DLW). The subtractive model of DLW allows for directly producing microfluidic channels via ablation in an extremely simple and cost-effective manner.
View Article and Find Full Text PDFSelective laser etching (SLE) is a technique that allows the fabrication of arbitrarily shaped glass micro-objects. In this work, we show how the capabilities of this technology can be improved in terms of selectivity and etch rate by applying an etchant solution based on a Potassium Hydroxide, water, and isopropanol mixture. By varying the concentrations of these constituents, the wetting properties, as well as the chemical reaction of fused silica etching, can be changed, allowing us to achieve etching rates in modified fused silica up to 820 μm/h and selectivity up to ∼3000.
View Article and Find Full Text PDFIn this work, we show how femtosecond (fs) laser-based selective glass etching (SLE) can be used to expand capabilities in fabricating 3D structures out of a single piece of glass. First, an investigation of the etching process is performed, taking into account various laser parameters and scanning strategies. These results provide critical insights into the optimization of the process allowing to increase manufacturing throughput.
View Article and Find Full Text PDFAnisotropic aerogels are promising bulk materials with a porous 3D structure, best known for their large surface area, low density, and extremely low thermal conductivity. Herein, we report the synthesis and some properties of ultralight magnetic nanofibrous GdPO aerogels. Our proposed GdPO aerogel synthesis route is eco-friendly and does not require any harsh precursors or conditions.
View Article and Find Full Text PDF