Publications by authors named "Rojo T"

Understanding the interplay of interaction and disorder in quantum transport poses long-standing scientific challenges for theory and experiment. While highly controlled ultracold atomic platforms combining atomic interactions with spatially disordered lattices have led to remarkable advances, the extension of such controlled studies to phenomena in high-dimensional disordered systems, such as the three-dimensional Anderson metal-insulator transition has been limited. Kicked quantum gases provide an alternate experimental platform that captures the Anderson model in momentum space and features dynamical localization as the analog of Anderson localization.

View Article and Find Full Text PDF

Objective: Early detection of cognitive impairment in the elderly is crucial for diagnosis and appropriate care. Brief, cost-effective cognitive screening instruments are needed to help identify individuals who require further evaluation. This study presents preliminary data on a new screening technology using automated voice recording analysis software in a Spanish population.

View Article and Find Full Text PDF

The effective flow of electrons through bulk electrodes is crucial for achieving high-performance batteries, although the poor conductivity of homocyclic sulfur molecules results in high barriers against the passage of electrons through electrode structures. This phenomenon causes incomplete reactions and the formation of metastable products. To enhance the performance of the electrode, it is important to place substitutable electrification units to accelerate the cleavage of sulfur molecules and increase the selectivity of stable products during charging and discharging.

View Article and Find Full Text PDF

Over the last years, hard carbon (HC) has been the most promising anode material for sodium-ion batteries due to its low voltage plateau, low cost and sustainability. In this study, biomass waste (spent coffee grounds, sunflower seed shells and rose stems) was investigated as potential material for hard carbon preparation combining a two-step method consisting of on hydrothermal carbonization (HTC), to remove the inorganic impurities and increase the carbon content, and a subsequent pyrolysis process. The use of HTC as pretreatment prior to pyrolysis improves the specific capacity in all the materials compared to the ones directly pyrolyzed by more than 100 % at high C-rates.

View Article and Find Full Text PDF

Lithium iron phosphate (LiFePO, LFP) is the most promising cathode material for use in safe electric vehicles (EVs), due to its long cycle stability, low cost, and low toxicity, but it suffers from low conductivity and ion diffusion. In this work, we present a simple method to obtain LFP/carbon (LFP/C) composites with different types of NC: cellulose nanocrystal (CNC) and cellulose nanofiber (CNF). Microwave-assisted hydrothermal synthesis was used to obtain LFP with nanocellulose inside the vessel, and the final LFP/C composite was achieved by heating the mixture under a N atmosphere.

View Article and Find Full Text PDF

Transition metal (TM) layered oxides constitute a promising family of materials for use in Na-ion battery cathodes. Here O3-Na (NiMnFe) O was synthesised using optimised sol-gel and solid-state routes, and the physico- and electrochemical natures of the resulting materials were thoroughly studied. Significant differences in electrochemical behaviour were observed, and the use of in operando XRD determined this stemmed from the suppression of the P3 phase in the sol-gel material during cycling.

View Article and Find Full Text PDF

P2-Na[FeMn]O layered oxide is a promising high energy density cathode material for sodium-ion batteries. However, one of its drawbacks is the poor long-term stability in the operating voltage window of 1.5-4.

View Article and Find Full Text PDF

The current Li-based battery technology is limited in terms of energy contents. Therefore, several approaches are considered to improve the energy density of these energy storage devices. Here, we report the combination of a heteroatom-based gel polymer electrolyte with a hybrid cathode comprising of a Li-rich oxide active material and graphite conductive agent to produce a high-energy "shuttle-relay" Li metal battery, where additional capacity is generated from the electrolyte's anion shuttling at high voltages.

View Article and Find Full Text PDF

The abundance of the available sodium sources has led to rapid progress in sodium-ion batteries (SIBs), making them potential candidates for immediate replacement of lithium-ion batteries (LIBs). However, commercialization of SIBs has been hampered by their fading efficiency due to the sodium consumed in the formation of solid-electrolyte interphase (SEI) when using hard carbon (HC) anodes. Herein, NaCO sodium salt is introduced as a highly efficient, cost-effective, and safe cathode sodiation additive.

View Article and Find Full Text PDF

The P2/O3 layered oxide system is thought to benefit from a synergistic enhancement, resulting from the presence of both phases, which makes it a promising cathode material for Na-ion battery applications. Here, biphasic P2/O3-NaLiMnFeO is investigated via a combination of neutron and X-ray scattering techniques. Neutron diffraction data indicates that the O3 alkali metal site is fully occupied by Li.

View Article and Find Full Text PDF

Rechargeable sodium batteries are a promising technology for low-cost energy storage. However, the undesirable drawbacks originating from the use of glass fiber membrane separators have long been overlooked. A versatile grafting-filtering strategy was developed to controllably tune commercial polyolefin separators for sodium batteries.

View Article and Find Full Text PDF

Silicon-based anodes are extensively studied as an alternative to graphite for lithium ion batteries. However, silicon particles suffer larges changes in their volume (about 280%) during cycling, which lead to particles cracking and breakage of the solid electrolyte interphase. This process induces continuous irreversible electrolyte decomposition that strongly reduces the battery life.

View Article and Find Full Text PDF

The depletion of fossil fuels, the rapid evolution of the global economy, and high living standards require the development of new energy-storage systems that can meet the needs of the world's population. Metal-oxygen batteries (M=Li, Na) arise, therefore, as promising alternatives to widely used lithium-ion batteries, due to their high theoretical energy density, which approaches that of gasoline. Although significant progress has been made in recent years, there are still several challenges to overcome to reach the final commercialization of this technology.

View Article and Find Full Text PDF

The sodium-vanadium fluorophosphate family has been actively investigated recently, but few examples tackle chemical doping or the substitution of vanadium. This work presents a series of iron-doped compounds NaVOFe(PO)F ( ≤ 0.3) prepared by hydrothermal synthesis with low iron content.

View Article and Find Full Text PDF

Integrated approaches that expedite the production and processing of graphene into useful structures and devices, particularly through simple and environmentally friendly strategies, are highly desirable in the efforts to implement this two-dimensional material in state-of-the-art electrochemical energy storage technologies. Here, we introduce natural nucleotides (e.g.

View Article and Find Full Text PDF

Lithium-ion batteries (LIBs) have become ubiquitous power sources for small electronic devices, electric vehicles, and stationary energy storage systems. Despite the success of LIBs which is acknowledged by their increasing commodity market, the historical evolution of the chemistry behind the LIB technologies is laden with obstacles and yet to be unambiguously documented. This Viewpoint outlines chronologically the most essential findings related to today's LIBs, including commercial electrode and electrolyte materials, but furthermore also depicts how the today popular and widely emerging solid-state batteries were instrumental at very early stages in the development of LIBs.

View Article and Find Full Text PDF

We study the stability of several diglyme-based electrolytes in sodium|sodium and sodium|graphite cells. The electrolyte behavior for different conductive salts [sodium trifluoromethanesulfonate (NaOTf), NaPF, NaClO, bis(fluorosulfonyl)imide (NaFSI), and sodium bis(trifluoromethanesulfonyl)imide (NaTFSI)] is compared and, in some cases, considerable differences are identified. Side reactions are studied with a variety of methods, including X-ray diffraction, scanning electron microscopy, transmission electron microscopy, online electrochemical mass spectrometry, and in situ electrochemical dilatometry.

View Article and Find Full Text PDF

The electrochemical properties of P2-NaMnFeTiO layered oxide, which is a promising cathode material for rechargeable Na-ion batteries (NIBs), are evaluated with an optimized in-house ionic liquid (IL)-based electrolyte, and its performance is compared with that using carbonate-based electrolyte. The IL-based system reveals better electrochemical performance at room temperature than the carbonate electrolyte-based one at 0.1C and 1C, especially in terms of cycling stability, with a 97% capacity retention after 100 deep cycles (0.

View Article and Find Full Text PDF

A series of electrospun binder-free carbon nanofiber (CNF) mats have been studied as air cathodes for Na-oxygen batteries using a pyrrolidinium-based electrolyte and compared with the commercial air cathode Toray 090. A tenfold increase in the discharge capacity is attained when using CNFs in comparison with Toray 090, affording a discharge capacity of 1.53 mAh cm at a high discharge rate of 0.

View Article and Find Full Text PDF

The effect of water on the properties of superconcentrated sodium salt solutions in ionic liquids (ILs) was investigated to design electrolytes for sodium battery applications with water as an additive. Water was added to a 50 mol % solution of NaFSI [FSI=bis(fluorosulfonyl)imide] in the ionic liquid N-methyl-N-propylpyrrolidinium bis(fluorosulfonyl)imide (C mpyrFSI). Although the thermal properties (e.

View Article and Find Full Text PDF

Due to the high theoretical specific energy, the lithium-oxygen battery has been heralded as a promising energy storage system for applications such as electric vehicles. However, its large over-potentials during discharge-charge cycling lead to the formation of side-products, and short cycle life. Herein, we report an ionic liquid bearing the redox active 2,2,6,6-tetramethyl-1-piperidinyloxy moiety, which serves multiple functions as redox mediator, oxygen shuttle, lithium anode protector, as well as electrolyte solvent.

View Article and Find Full Text PDF

Cation-deficient two-dimensional (2D) materials, especially atomically thin nanosheets, are highly promising electrode materials for electrochemical energy storage that undergo metal ion insertion reactions, yet they have rarely been achieved thus far. Here, we report a Ti-deficient 2D unilamellar lepidocrocite-type titanium oxide (TiO) nanosheet superlattice for sodium storage. The superlattice composed of alternately restacked defective TiO and nitrogen-doped graphene monolayers exhibits an outstanding capacity of ∼490 mA h g at 0.

View Article and Find Full Text PDF

Thin films of ionic liquid 1-ethyl-3-methylimidazolium bis(fluoromethylsulfonyl)imide ([EMIm][FSI]) vapor-deposited on highly oriented pyrographite (HOPG) were studied by X-ray photoelectron spectroscopy and atomic force microscopy. The results revealed a reversible morphological transition from a "drop-on-layer" structure to a "flat-layer" structure at positive, and not at negative, polarization. The effect is rationalized in terms of electric-field-induced reduction of the liquid-solid transition temperature in the ionic liquid film, when its thickness is comparable to the charge screening length.

View Article and Find Full Text PDF

Hard carbon (HC) is the state-of-the-art anode material for sodium-ion batteries due to its excellent overall performance, wide availability, and relatively low cost. Recently, tremendous effort has been invested to elucidate the sodium storage mechanism in HC, and to explore synthetic approaches that can enhance the performance and lower the cost. However, disagreements remain in the field, particularly on the fundamental questions of ion transfer and storage and the ideal HC structure for high performance.

View Article and Find Full Text PDF

High-temperature sodium-sulfur batteries operating at 300-350 °C have been commercially applied for large-scale energy storage and conversion. However, the safety concerns greatly inhibit their widespread adoption. Herein, we report a room-temperature sodium-sulfur battery with high electrochemical performances and enhanced safety by employing a "cocktail optimized" electrolyte system, containing propylene carbonate and fluoroethylene carbonate as co-solvents, highly concentrated sodium salt, and indium triiodide as an additive.

View Article and Find Full Text PDF