Early-life malnutrition increases adult disease risk in humans, but the causal changes in gene regulation, signaling, and metabolism are unclear. In the roundworm Caenorhabditis elegans, early-life starvation causes well-fed larvae to develop germline tumors and other gonad abnormalities as adults. Furthermore, reduced insulin/IGF signaling during larval development suppresses these starvation-induced abnormalities.
View Article and Find Full Text PDFNutrient availability governs growth and quiescence, and many animals arrest development when starved. Using C. elegans L1 arrest as a model, we show that gene expression changes deep into starvation.
View Article and Find Full Text PDFThe publication of the Caenorhabditis briggsae reference genome in 2003 enabled the first comparative genomics studies between C. elegans and C. briggsae, shedding light on the evolution of genome content and structure in the Caenorhabditis genus.
View Article and Find Full Text PDFMitochondria are central players in host immunometabolism as they function not only as metabolic hubs but also as signaling platforms regulating innate immunity. Environmental exposures to mitochondrial toxicants occur widely and are increasingly frequent. Exposures to these mitotoxicants may pose a serious threat to organismal health and the onset of diseases by disrupting immunometabolic pathways.
View Article and Find Full Text PDFQuiescence, an actively-maintained reversible state of cell cycle arrest, is not well understood. PTEN is one of the most frequently lost tumor suppressors in human cancers and regulates quiescence of stem cells and cancer cells. The sole PTEN ortholog in Caenorhabditis elegans is daf-18.
View Article and Find Full Text PDFMating systems have profound effects on genetic diversity and compatibility. The convergent evolution of self-fertilization in three species provides a powerful lens to examine causes and consequences of mating system transitions. Among the selfers, is the least genetically diverse and most afflicted by outbreeding depression.
View Article and Find Full Text PDFStrong epidemiological evidence supports the association between increased air pollution and the risk of developing atherosclerotic cardiovascular diseases (CVDs). However, the mechanism remains unclear. As an environmental air pollutant and benzo-a-pyrene (BP) metabolite, BP-1,6-quinone (BP-1,6-Q) is present in the particulate phase of air pollution.
View Article and Find Full Text PDFThe roundworm C. elegans reversibly arrests larval development during starvation [1], but extended early-life starvation reduces reproductive success [2, 3]. Maternal dietary restriction (DR) buffers progeny from starvation as young larvae, preserving reproductive success [4].
View Article and Find Full Text PDFBackground: Developmental physiology is very sensitive to nutrient availability. For instance, in the nematode Caenorhabditis elegans, newly hatched L1-stage larvae require food to initiate postembryonic development. In addition, larvae arrested in the dauer diapause, a non-feeding state of developmental arrest that occurs during the L3 stage, initiate recovery when exposed to food.
View Article and Find Full Text PDFPhenotypic plasticity is facilitated by epigenetic regulation, and remnants of such regulation may persist after plasticity-inducing cues are gone. However, the relationship between plasticity and transgenerational epigenetic memory is not understood. Dauer diapause in provides an opportunity to determine how a plastic response to the early-life environment affects traits later in life and in subsequent generations.
View Article and Find Full Text PDF/FoxO is required to survive starvation in , but how FoxO promotes starvation resistance is unclear. We show that /FoxO restructures carbohydrate metabolism by driving carbon flux through the glyoxylate shunt and gluconeogenesis and into synthesis of trehalose, a disaccharide of glucose. Trehalose is a well-known stress protectant, capable of preserving membrane organization and protein structure during abiotic stress.
View Article and Find Full Text PDFVascular inflammation plays a significant role in the pathogenesis of atherosclerosis. Luteolin, a naturally occurring flavonoid present in many medicinal plants and some commonly consumed fruits and vegetables, has received wide attention for its potential to improve vascular function in vitro. However, its effect in vivo and the molecular mechanism of luteolin at physiological concentrations remain unclear.
View Article and Find Full Text PDF