Publications by authors named "Rojas-Briseno J"

Monomer, dimer and trimer semiconductor superlattices are an alternative for bandgap engineering due to the possibility of duplicate, triplicate, and in general multiply the number of minibands and minigaps in a specific energy region. Here, we show that monomer, dimer, and trimer magnetic silicene superlattices (MSSLs) can be the basis for tunable magnetoresistive devices due to the multiplication of the peaks of the tunneling magnetoresistance (TMR). In addition, these structures can serve as spin-valleytronic devices due to the formation of two well-defined spin-valley polarization states by appropriately adjusting the superlattice structural parameters.

View Article and Find Full Text PDF

Magnetic silicene superlattices (MSSLs) are versatile structures with spin-valley polarization and tunneling magnetoresistance (TMR) capabilities. However, the oscillating transport properties related to the superlattice periodicity impede stable spin-valley polarization states reachable by reversing the magnetization direction. Here, we show that aperiodicity can be used to improve the spin-valley polarization and TMR by reducing the characteristic conductance oscillations of periodic MSSLs (P-MSSLs).

View Article and Find Full Text PDF

Magnetic silicene junctions are versatile structures with spin-valley polarization and magnetoresistive capabilities. Here, we investigate the temperature effects on the transport properties of single magnetic silicene junctions. We use the transfer matrix method and the Landauer-Büttiker formalism to calculate the transmittance, conductance, spin-valley polarization and tunneling magnetoresistance (TMR).

View Article and Find Full Text PDF