Publications by authors named "Roja Rohani"

Purpose: The bacterial gene MagA imparts magnetic properties to mammalian cells and provides a basis for cell tracking by magnetic resonance imaging (MRI). In a mouse model of tumor growth from transplanted cells, we used repetitive MRI to demonstrate the in vivo imaging potential of MagA expression relative to a modified ferritin overexpression system, lacking regulation through iron response elements (HF + LF).

Procedures: Subcutaneous tumor xenografts were monitored weekly from days 2 to 34 post-injection.

View Article and Find Full Text PDF

Formation of iron biominerals is a naturally occurring phenomenon, particularly among magnetotactic bacteria which produce magnetite (Fe(3) O(4) ) in a subcellular compartment termed the magnetosome. Under the control of numerous genes, the magnetosome serves as a model upon which to (1) develop gene-based contrast in mammalian cells and (2) provide a mechanism for reporter gene expression in magnetic resonance imaging (MRI). There are two main components to the magnetosome: the biomineral and the lipid bilayer that surrounds it.

View Article and Find Full Text PDF

BACKGROUND AIMS. The use of dendritic cells (DC) as an adjuvant in cell-based immunotherapeutic cancer vaccines is a growing field of interest. A reliable and non-invasive method to track the fate of autologous DC following their administration to patients is required in order to confirm that clinically sufficient numbers are reaching the lymph node (LN).

View Article and Find Full Text PDF

An optimized non-invasive imaging modality capable of tracking and quantifying in vivo DC migration in patients would provide clinicians with valuable information regarding therapeutic DC-based vaccine outcomes. Superparamagnetic iron oxide (SPIO) nanoparticles were used to label bone marrow-derived DC. In vivo DC migration was tracked and quantified non-invasively using cellular magnetic resonance imaging (MRI) in a mouse model.

View Article and Find Full Text PDF

Purpose: This study seeks to assess the use of labeling with micron-sized iron oxide (MPIO) particles for the detection and quantification of the migration of dendritic cells (DCs) using cellular magnetic resonance imaging (MRI).

Procedures: DCs were labeled with red fluorescent MPIO particles for detection by cellular MRI and a green fluorescent membrane dye (PKH67) for histological detection. MPIO-labeled DCs or unlabeled control DCs were injected into mice footpads at two doses (0.

View Article and Find Full Text PDF