Publications by authors named "Roig-Lopez J"

Radiotherapy is a mainstay of treatment for head and neck cancer. However, the morbidity of treatment remains a clinical challenge. Molecular profiling has provided further insight into tumor biology and tumor sensitivity to radiation, and this information could be used to personalize treatment.

View Article and Find Full Text PDF

Background: Among deuterostomes, the regenerative potential is maximally expressed in echinoderms, animals that can quickly replace most injured organs. In particular, sea cucumbers are excellent models for studying organ regeneration since they regenerate their digestive tract after evisceration. However, echinoderms have been sidelined in modern regeneration studies partially because of the lack of genome-wide profiling approaches afforded by modern genomic tools.

View Article and Find Full Text PDF

The bulge region of the hair follicle serves as a repository for epithelial stem cells that can regenerate the follicle in each hair growth cycle and contribute to epidermis regeneration upon injury. Here we describe a population of multipotential stem cells in the hair follicle bulge region; these cells can be identified by fluorescence in transgenic nestin-GFP mice. The morphological features of these cells suggest that they maintain close associations with each other and with the surrounding niche.

View Article and Find Full Text PDF

We report the characterization of an ependymin-related gene (EpenHg) from a regenerating intestine cDNA library of the sea cucumber Holothuria glaberrima. This finding is remarkable because no ependymin sequence has ever been reported from invertebrates. Database comparisons of the conceptual translation of the EpenHg gene reveal 63% similarity (47% identity) with mammalian ependymin-related proteins (MERPs) and close relationship with the frog and piscine ependymins.

View Article and Find Full Text PDF

Serum amyloid A (SAA) proteins comprise a family of highly conserved apolipoproteins found in all mammals thus far investigated, and also in ducks and salmonid fishes. However, no invertebrate SAA homologues have been detected to date. Here we report the characterization of the first SAA homologue in a nonvertebrate deuterostome, the echinoderm Holothuria glaberrima.

View Article and Find Full Text PDF

The Echinodermata is a unique animal group forming an early branch in the deuterostomes phylogenetic tree. In echinoids and asteroids a single Hox cluster with nine cognates of the vertebrate Hox paralogous groups has been reported, but no data are available from other echinoderm classes. We report here nine Hox-type sequences from the sea cucumber Holothuria glaberrima, a member of the class Holothuroidea.

View Article and Find Full Text PDF

Molecular mechanisms underlying the generation of distinct cell phenotypes is a key issue in developmental biology. A major paradigm of determination of neural cell fate concerns the development of sympathetic neurones and neuroendocrine chromaffin cells from a common sympathoadrenal (SA) progenitor cell. Two decades of in vitro experiments have suggested an essential role of glucocorticoid receptor (GR)-mediated signalling in generating chromaffin cells.

View Article and Find Full Text PDF

TrkA high-affinity receptors are essential for the normal development of sympathetic paravertebral neurons and subpopulations of sensory neurons. Paravertebral sympathetic neurons and chromaffin cells of the adrenal medulla share an ontogenetic origin, responsiveness to NGF, and expression of TrkA. Which aspects of development of the adrenal medulla might be regulated via TrkA are unknown.

View Article and Find Full Text PDF