Publications by authors named "Rohtem Aviram"

Distinct and seemingly independent cellular pathways affecting intracellular machinery or extracellular matrix (ECM) deposition and organization have been implicated in aneurysm formation. One of the key genes associated with this pathology in both humans and mice is lysyl oxidase (LOX), a secreted ECM-modifying enzyme, highly expressed in medial vascular smooth muscle cells. To dissect the mechanisms leading to aneurysm development, we conditionally deleted Lox in smooth muscle cells.

View Article and Find Full Text PDF

Distinct, seemingly independent, cellular pathways affecting intracellular machineries or extracellular matrix (ECM) deposition and organization, have been implicated in aneurysm formation. One of the key genes associated with the pathology in both humans and mice is Lysyl oxidase (LOX), a secreted ECM-modifying enzyme, highly expressed in medial vascular smooth muscle cells. To dissect the mechanisms leading to aneurysm development, we conditionally deleted in smooth muscle cells.

View Article and Find Full Text PDF

Fibronectin fibrillogenesis and mechanosensing both depend on integrin-mediated force transmission to the extracellular matrix. However, force transmission is in itself dependent on fibrillogenesis, and fibronectin fibrils are found in soft embryos where high forces cannot be applied, suggesting that force cannot be the sole initiator of fibrillogenesis. Here, we identify a nucleation step prior to force transmission, driven by fibronectin oxidation mediated by lysyl oxidase enzyme family members.

View Article and Find Full Text PDF

Crosstalk between multiple components underlies the formation of mature vessels. Although the players involved in angiogenesis have been identified, mechanisms underlying the crosstalk between them are still unclear. Using the ex vivo aortic ring assay, we set out to dissect the interactions between two key angiogenic signaling pathways, vascular endothelial growth factor (VEGF) and transforming growth factor β (TGFβ), with members of the lysyl oxidase (LOX) family of matrix modifying enzymes.

View Article and Find Full Text PDF

Integration of extracellular matrix (ECM)-derived cues into transcriptional programs is essential primarily in rapidly morphing environments, such as regenerating tissues. Here, we demonstrate that lysyl oxidase (Lox), known for its ECM-modifying activities, primarily collagen crosslinking, also directly regulates transcription factor (TF) localization. Using genetic and pharmacological strategies, we highlight an intracellular role for Lox in myogenic progenitors essential for muscle regeneration.

View Article and Find Full Text PDF

The extracellular matrix (ECM) regulates numerous cellular events in addition to providing structural integrity. Among several protein and enzyme families implicated in functions of the ECM, the lysyl oxidases and ADAMTS proteins are known to participate in microfibril and elastic fiber formation as well as ECM-associated signaling. A yeast two-hybrid screen to identify lysyl oxidase (LOX) binding proteins identified ADAMTSL4 as a potential interactor.

View Article and Find Full Text PDF