Background: Protoacoustics has emerged as a promising real-time range measurement method for proton therapy. Optical hydrophones (OHs) are considered suitable to detect protoacoustic waves owing to their ultracompact size and high sensitivity. In our previous research, we demonstrated that the time-of-arrival (TOA) measured by an OH showed good agreement with the simulated ground truth in a homogeneous medium.
View Article and Find Full Text PDFBackground: Ionoacoustics is a promising approach to reduce the range uncertainty in proton therapy. A miniature-sized optical hydrophone (OH) was used as a measuring device to detect weak ionoacoustic signals with a high signal-to-noise ratio in water. However, further development is necessary to prevent wave distortion because of nearby acoustic impedance discontinuities while detection is conducted on the patient's skin.
View Article and Find Full Text PDFBackground: Proton range uncertainty has been the main factor limiting the ability of proton therapy to concentrate doses to tumors to their full potential. Ionoacoustic (IA) range verification is an approach to reducing this uncertainty by detecting thermoacoustic waves emitted from an irradiated volume immediately following a pulsed proton beam delivery; however, the signal weakness has been an obstacle to its clinical application. To increase the signal-to-noise ratio (SNR) with the conventional piezoelectric hydrophone (PH), the detector-sensitive volume needs to be large, but it could narrow the range of available beam angles and disturb real-time images obtained during beam delivery.
View Article and Find Full Text PDFA novel fast proximal scanning method, to the best of our knowledge, termed fiber-core-targeted scanning (FCTS), is proposed for illuminating individual fiber cores sequentially to remove the pixelation effect in fiber bundle (FB) imaging. FCTS is based on a galvanometer scanning system. Through a dynamic control of the scan trajectory and speed using the prior knowledge of fiber core positions, FCTS experimentally verifies a precise sequential delivery of laser pulses into fiber cores at a maximal speed of 45,000 cores per second.
View Article and Find Full Text PDFWe present a dual modality functional optical coherence tomography and photoacoustic microscopy (OCT-PAM) system. The photoacoustic modality employs an akinetic optical sensor with a large imaging window. This imaging window enables direct reflection mode operation, and a seamless integration of optical coherence tomography (OCT) as a second imaging modality.
View Article and Find Full Text PDFThis publisher's note corrects an error in the funding section in Opt. Lett.42, 4319 (2017)OPLEDP0146-959210.
View Article and Find Full Text PDFThis Letter presents a novel dual modality reflection mode optical coherence and photoacoustic microscopy (OC-PAM) system. The optical coherence microscopy modality features a broadband source to accomplish 5 μm axial resolution. The photoacoustic microscopy modality uses a rigid akinetic Fabry-Perot etalon encapsulated in an optically transparent medium, which forms a 2 mm×11 mm translucent imaging window, permitting reflection mode dual modality imaging.
View Article and Find Full Text PDFA novel all-optical akinetic ultrasound sensor, consisting of a rigid, fiber-coupled Fabry-Pérot etalon with a transparent central opening is presented. The sensing principle relies exclusively on the detection of pressure-induced changes of the refractive index in the fluid filling the Fabry-Pérot cavity. This enables resonance-free, inherently linear signal detection over a broad bandwidth.
View Article and Find Full Text PDFWe experimentally study the dynamics of a degenerate one-dimensional Bose gas that is subject to a continuous outcoupling of atoms. Although standard evaporative cooling is rendered ineffective by the absence of thermalizing collisions in this system, we observe substantial cooling. This cooling proceeds through homogeneous particle dissipation and many-body dephasing, enabling the preparation of otherwise unexpectedly low temperatures.
View Article and Find Full Text PDFWe present experimental evidence for scale invariant behaviour of the excitation spectrum in phase-fluctuating quasi-1d Bose gases after a rapid change of the external trapping potential. Probing density correlations in free expansion, we find that the temperature of an initial thermal state scales with the spatial extension of the cloud as predicted by a model based on adiabatic rescaling of initial eigenmodes with conserved quasiparticle occupation numbers. Based on this result, we demonstrate that shortcuts to adiabaticity for the rapid expansion or compression of the gas do not induce additional heating.
View Article and Find Full Text PDFThe description of the non-equilibrium dynamics of isolated quantum many-body systems within the framework of statistical mechanics is a fundamental open question. Conventional thermodynamical ensembles fail to describe the large class of systems that exhibit nontrivial conserved quantities, and generalized ensembles have been predicted to maximize entropy in these systems. We show experimentally that a degenerate one-dimensional Bose gas relaxes to a state that can be described by such a generalized ensemble.
View Article and Find Full Text PDF