Cancer cell proliferation is a high energy demanding process, where the cancer cells acquire energy by high rates of glycolysis, and this phenomenon is known as the "Warburg effect". Microrchidia 2 (MORC2), an emerging chromatin remodeler, is over expressed in several cancers including breast cancer and found to promote cancer cell proliferation. However, the role of MORC2 in glucose metabolism in cancer cells remains unexplored.
View Article and Find Full Text PDFAlthough Microrchidia 2 (MORC2) is overexpressed in many types of human cancer, its role in breast cancer progression remains unknown. Here, we report that the chromatin remodeler MORC2 expression positively correlates with β-catenin expression in breast cancer cell lines and patients. Overexpression of MORC2 augmented the expression of β-catenin and its target genes, cyclin D1 and c-Myc.
View Article and Find Full Text PDFMicrorchidia 2 (MORC2) is an emerging chromatin modifier with a role in chromatin remodeling and epigenetic regulation. MORC2 is found to be upregulated in most cancers, playing a significant role in tumorigenesis and tumor metastasis. Recent studies have demonstrated that MORC2 is a scaffolding protein, which interacts with the proteins involved in DNA repair, chromatin remodeling, lipogenesis, and glucose metabolism.
View Article and Find Full Text PDFMicrorchidia family CW-type zinc finger 2 (MORC2) is a recently identified chromatin modifier with an emerging role in cancer metastasis. However, its role in glucose metabolism, a hallmark of malignancy, remains to be explored. We found that MORC2 is a glucose-inducible gene and a target of c-Myc.
View Article and Find Full Text PDFBiochem Biophys Res Commun
November 2019
Metastasis Associated Protein1 (MTA1) is a chromatin modifier and its expression is significantly associated with prognosis of many cancers. However, its role in glucose metabolism remains unexplored. Here, we report that MTA1 has a significant role in glucose metabolism where MTA1 regulates the LDHA expression and activity and subsequently its function in breast cancer motility.
View Article and Find Full Text PDF