Med Image Comput Comput Assist Interv
November 2010
Tracking implanted markers in the prostate during each radiation treatment delivery provides an accurate approximation of prostate location, which enables the use of higher daily doses with tighter margins of the treatment beams and thus improves the efficiency of the radiotherapy. However, the lack of 3D image data with such a technique prevents calculation of delivered dose as required for adaptive planning. We propose to use a reference statistical shape model generated from the planning image and a deformed version of the reference model fitted to the implanted marker locations during treatment to estimate a regionally dense deformation from the planning space to the treatment space.
View Article and Find Full Text PDFProc IEEE Int Symp Biomed Imaging
June 2009
Intensity modulated radiation therapy (IMRT) for cancers in the lung remains challenging due to the complicated respiratory dynamics. We propose a shape-navigated dense image deformation model to estimate the patient-specific breathing motion using 4D respiratory correlated CT (RCCT) images. The idea is to use the shape change of the lungs, the major motion feature in the thorax image, as a surrogate to predict the corresponding dense image deformation from training.
View Article and Find Full Text PDFLearning probability distributions of the shape of anatomic structures requires fitting shape representations to human expert segmentations from training sets of medical images. The quality of statistical segmentation and registration methods is directly related to the quality of this initial shape fitting, yet the subject is largely overlooked or described in an ad hoc way. This article presents a set of general principles to guide such training.
View Article and Find Full Text PDF