Publications by authors named "Rohit Duggal"

Background: Among the vital functions, respiration can be claimed to be one of the most important. A thorough understanding of the patient should be an important aspect a prosthodontist should dwell into so as to predispose patients to acknowledge the kind of prosthesis they require. Hence, the present study was conducted for assessing the effect of complete dentures on respiratory performance.

View Article and Find Full Text PDF

Bioconjugate formats provide alternative strategies for antigen targeting with bispecific antibodies. Here, PSMA-targeted Fab conjugates were generated using different bispecific formats. Interchain disulfide bridging of an αCD3 Fab enabled installation of either the PSMA-targeting small molecule DUPA (SynFab) or the attachment of an αPSMA Fab (BisFab) by covalent linkage.

View Article and Find Full Text PDF

Brain invasion by glioblastoma determines prognosis, recurrence, and lethality in patients, but no master factor coordinating the invasive properties of glioblastoma has been identified. Here we report evidence favoring such a role for the noncanonical WNT family member Wnt5a. We found the most invasive gliomas to be characterized by Wnt5a overexpression, which correlated with poor prognosis and also discriminated infiltrating mesenchymal glioblastoma from poorly motile proneural and classical glioblastoma.

View Article and Find Full Text PDF

Aim. To compare and evaluate the static frictional resistance offered by the four different types of ligation methods in both dry and wet conditions and at different durations when immersed in artificial saliva. Material and Methods.

View Article and Find Full Text PDF

Certain limitations of the neurosphere assay (NSA) have resulted in a search for alternative culture techniques for brain tumor-initiating cells (TICs). Recently, reports have described growing glioblastoma (GBM) TICs as a monolayer using laminin. We performed a side-by-side analysis of the NSA and laminin (adherent) culture conditions to compare the growth and expansion of GBM TICs.

View Article and Find Full Text PDF

Cancer stem cells (CSCs) are defined by their innate stem cell like properties and can be identified by specific markers that include antigens, molecules and signaling pathways. Like stem cells, CSC divide indefinitely giving rise to both more CSCs and differentiated cell progeny. CSCs can give rise to tumors that phenotypically resemble their origin, either morphologically or by expression of tissue specific genes.

View Article and Find Full Text PDF

With the cementing of the cancer stem cell (CSC) concept, cancer biology and cancer drug discovery have attained a new avenue to target cancer. Studying the hierarchy of tumor tissue organization and how to inhibit the cell that resides at the very top of this hierarchy has opened up a new branch of tumor biology and given the opportunity to develop novel cancer-targeting strategies. With the discovery of CSCs in majority of cancer indications there seems to be a universal applicability of the concept.

View Article and Find Full Text PDF

Background: Glioblastoma multiforme (GBM) is one of the most aggressive forms of cancer with a high rate of recurrence. We propose a novel oncolytic vaccinia virus (VACV)-based therapy using expression of the bone morphogenetic protein (BMP)-4 for treating GBM and preventing recurrence.

Methods: We have utilized clinically relevant, orthotopic xenograft models of GBM based on tumor-biopsy derived, primary cancer stem cell (CSC) lines.

View Article and Find Full Text PDF

While nonstructural protein 4B (NS4B) from hepatitis C virus (HCV) is absolutely required for viral propagation, a full understanding of the enzymatic properties of this protein is lacking. Previous studies suggest that NS4B is located at the endoplasmic reticulum and that the protein structure consists of four central transmembrane domains with the N- and C-termini located in the cytoplasm of the host cell. To characterize the enzymatic activity of NS4B, the full-length protein with a C-terminal His tag was expressed in Sf9 insect cells and stabilized with nonionic detergents during purification.

View Article and Find Full Text PDF

Efforts to find effective treatment for hepatitis C virus (HCV) have been hampered by the lack of a robust in vitro infectious tissue-culture system for this virus. A subgenomic replicon system was first developed in 1999 and has since been extensively optimized to accommodate the need for conveniently measuring HCV replication in vitro and widely adopted in HCV drug-discovery efforts. Here we describe the adaptation of a modified replicon system for a high-throughput screening (HTS) in anti-HCV drug discovery.

View Article and Find Full Text PDF

To address the need for broad-spectrum antiviral activity characterization of hepatitis C virus (HCV) polymerase inhibitors, we created a panel of intergenotypic chimeric replicons containing nonstructural (NS) protein NS5B sequences from genotype 2b (GT2b), GT3a, GT4a, GT5a, and GT6a HCV isolates. Viral RNA extracted from non-GT1 HCV patient plasma was subjected to reverse transcription. The NS5B region was amplified by nested PCR and introduced into the corresponding region of the GT1b (Con-1) subgenomic reporter replicon by Splicing by Overlap Extension (SOEing) PCR.

View Article and Find Full Text PDF

A novel class of nonnucleoside hepatitis C virus (HCV) polymerase inhibitors characterized by a dihydropyrone core was identified by high-throughput screening. Crystallographic studies of these compounds in complex with the polymerase identified an allosteric binding site close to the junction of the thumb and finger domains, approximately 30 A away from the catalytic center. AG-021541, a representative compound from this series, displayed measurable in vitro antiviral activity against the HCV genotype 1b subgenomic replicon with a mean 50% effective concentration of 2.

View Article and Find Full Text PDF

A major obstacle in hepatitis C virus (HCV) research has been the lack of a permissive cell culture system that produces infectious viral particles. Significant breakthroughs have been achieved lately in establishing such culture systems. Yet to date, there are no reports of the applications of any of these systems in HCV drug screening.

View Article and Find Full Text PDF

Hepatitis C virus (HCV) research and drug discovery have been facilitated by the introduction of cell lines with self-replicating subgenomic HCV replicons. Early attempts to carry out robust, high-throughput screens (HTS) using HCV replicons have met with limited success. Specifically, selectable replicons have required laborious reverse transcription-PCR quantitation, and reporter replicons have generated low signal-to-noise ratios.

View Article and Find Full Text PDF

A novel class of non-nucleoside HCV NS5B polymerase inhibitors has been identified from screening. A co-crystal structure revealed an allosteric binding site in the protein that required a unique conformational change to accommodate inhibitor binding. Herein we report the structure-activity relationships (SARs) of this novel class of dihydropyrone-containing compounds that show potent inhibitory activities against the HCV RNA polymerase in biochemical assays.

View Article and Find Full Text PDF