Lipotoxicity is a key pathological feature in the development of non-alcoholic steatohepatitis (NASH), which is characterized by liver injury, inflammation, and fibrosis. Although lipotoxicity has been shown to induce transcriptomic alterations in liver cells, the specific role of epigenetic regulators in NASH remains elusive. In this study, we demonstrate that pharmacological inhibition of histone methyltransferase G9a significantly worsens NASH progression in mice, as evidenced by increased hepatic cell death, inflammation, and fibrosis.
View Article and Find Full Text PDFFemale hormone-dependent cancers depend on estrogen for their growth. Numerous studies have explored the antitumor effect of dietary isoflavones on female hormone-dependent cancers. Still, few clinical evidence supports the use of isoflavones in female hormone-dependent cancer patients.
View Article and Find Full Text PDFNat Rev Gastroenterol Hepatol
October 2024
Thyroid hormones (triiodothyronine and thyroxine) are pivotal for metabolic balance in the liver and entire body. Dysregulation of the hypothalamus-pituitary-thyroid axis can contribute to hepatic metabolic disturbances, affecting lipid metabolism, glucose regulation and protein synthesis. In addition, reductions in circulating and intrahepatic thyroid hormone concentrations increase the risk of metabolic dysfunction-associated steatotic liver disease by inducing lipotoxicity, inflammation and fibrosis.
View Article and Find Full Text PDFEndocrinol Metab (Seoul)
October 2024
Non-small cell lung cancer comprises up to 85% of lung cancer cases and has a poor prognosis. At present, there are still no effective treatments for this illness. Evidence suggests that the prostaglandin [cyclooxygenase-2 (COX-2)] and leukotriene [lipoxygenase-5 (5-LOX)] pathways are involved in lung cancer carcinogenesis.
View Article and Find Full Text PDFBiochem Biophys Res Commun
November 2024
NPJ Metab Health Dis
August 2024
Metabolic dysfunction-associated steatotic liver disease (MASLD) originates from a homeostatic imbalance in hepatic lipid metabolism. Increased fat deposition in the liver of people suffering from MASLD predisposes them to develop further metabolic derangements, including diabetes mellitus, metabolic dysfunction-associated steatohepatitis (MASH), and other end-stage liver diseases. Unfortunately, only limited pharmacological therapies exist for MASLD to date.
View Article and Find Full Text PDFSkeletal muscle wasting is a clinically proven pathology associated with Japanese encephalitis virus (JEV) infection; however, underlying factors that govern skeletal muscle damage are yet to be explored. The current study aims to investigate the pathobiology of skeletal muscle damage using a mouse model of JEV infection. Our study reveals a significant increment in viral copy number in skeletal muscle post-JEV infection, which is associated with enhanced skeletal muscle cell death.
View Article and Find Full Text PDFBreast cancer is a heterogeneous disease, with a subpopulation of tumor cells known as breast cancer stem cells (BCSCs) with self-renewal and differentiation abilities that play a critical role in tumor initiation, progression, and therapy resistance. The tumor microenvironment (TME) is a complex area where diverse cancer cells reside creating a highly interactive environment with secreted factors, and the extracellular matrix. Autophagy, a cellular self-digestion process, influences dynamic cellular processes in the tumor TME integrating diverse signals that regulate tumor development and heterogeneity.
View Article and Find Full Text PDFThyroid hormones (THs) are key hormones that regulate development and metabolism in mammals. In man, the major target tissues for TH action are the brain, liver, muscle, heart, and adipose tissue. Defects in TH synthesis, transport, metabolism, and nuclear action have been associated with genetic and endocrine diseases in man.
View Article and Find Full Text PDFThe onset of metabolic dysfunction-associated steatohepatitis (MASH) or non-alcoholic steatohepatitis (NASH) represents a tipping point leading to liver injury and subsequent hepatic complications in the natural progression of what is now termed metabolic dysfunction-associated steatotic liver diseases (MASLD), formerly known as non-alcoholic fatty liver disease (NAFLD). With no pharmacological treatment currently available for MASH/NASH, the race is on to develop drugs targeting multiple facets of hepatic metabolism, inflammation, and pro-fibrotic events, which are major drivers of MASH. Nuclear receptors (NRs) regulate genomic transcription upon binding to lipophilic ligands and govern multiple aspects of liver metabolism and inflammation.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
March 2024
Autophagy, a cellular degradative process, has emerged as a key regulator of cellular energy production and stress mitigation. Dysregulated autophagy is a common phenomenon observed in several human diseases, and its restoration offers curative advantage. Non-alcoholic fatty liver disease (NAFLD), more recently renamed metabolic dysfunction-associated steatotic liver disease, is a major metabolic liver disease affecting almost 30% of the world population.
View Article and Find Full Text PDFIntroduction: Hepatocellular carcinoma (HCC) is a common solid cancer and the leading cause of cancer deaths worldwide. Sorafenib is the first drug used to treat HCC but its effectiveness needs to be improved, and it is important to find ways to treat cancer that combine sorafenib with other drugs. Synergistic therapies lower effective drug doses and side effects while enhancing the anticancer effect.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Res
January 2024
Dietary fructose intake through increased consumption of refined sugar induces hepatic de novo lipogenesis (DNL), a major contributor to hepatic steatosis in NAFLD, however, it's mechanism is not completely understood. Using HepG2 cells, we show that fructose induced DNL involves ribosomal protein S6 kinase B1 (RPS6KB1) driven augmentation of hepatic protein synthesis. This consequently results in endoplasmic reticulum (ER)-stress induced expression of pro-lipogenic gene, fatty acid synthase (FASN).
View Article and Find Full Text PDFCombination therapy has been proposed as a promising approach for lung cancer treatment, as it can enhance anticancer efficacy, and reduce dosages and adverse effects. This study aimed to explore the therapeutic potential of gossypol, a natural polyphenolic compound with sorafenib for treating lung cancer cells and elucidating its mechanism of action. The MTT assay was utilized to determine the IC of sorafenib and gossypol against A549 and NCI H460 cell lines.
View Article and Find Full Text PDFLung cancer is the most common and lethal cancer worldwide, yet there are no adequate and novel medications to control this illness. Previous reports suggested the potential of protein kinases to target lung cancer by regulating autophagy. This study establishes the role of aescin, a triterpenoid saponin, in targeting protein kinases responsible for lung cancer proliferation and mobility.
View Article and Find Full Text PDFNon-alcoholic steatohepatitis (NASH) is a clinically serious stage of non-alcoholic fatty liver disease (NAFLD). Histologically characterized by hepatocyte ballooning, immune cell infiltration, and fibrosis, NASH, at a molecular level, involves lipid-induced hepatocyte death and cytokine production. Currently, there are very few diagnostic biomarkers available to screen for NASH, and no pharmacological intervention is available for its treatment.
View Article and Find Full Text PDFCombining anti-cancer drugs has been exploited as promising treatment strategy to target lung cancer. Synergistic chemotherapies increase anti-cancer effect and reduce effective drug doses and side effects. In this study, therapeutic potential of escin in combination with sorafenib has been explored.
View Article and Find Full Text PDFLipotoxicity is a phenomenon of lipid-induced cellular injury in nonadipose tissue. Excess of free saturated fatty acids (SFAs) contributes to hepatic injury in nonalcoholic fatty liver disease (NAFLD), which has been growing at an unprecedented rate in recent years. SFAs and their derivatives such as ceramides and membrane phospholipids have been shown to induce intrahepatic oxidative damage and ER stress.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
April 2023
Nonalcoholic steatohepatitis (NASH) is considered a pivotal stage in nonalcoholic fatty liver disease (NAFLD) progression and increases the risk of end-stage liver diseases such as fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). The etiology of NASH is multifactorial and identifying reliable molecular players has proven difficult. Presently, there are no approved drugs for NASH treatment, which has become a leading cause of liver transplants worldwide.
View Article and Find Full Text PDFBreast cancer (BC) is one of the most frequently diagnosed cancers in women worldwide. It has surpassed lung cancer as the leading cause of cancer-related death. Breast cancer brain metastasis (BCBM) is becoming a major clinical concern that is commonly associated with ER-ve and HER2+ve subtypes of BC patients.
View Article and Find Full Text PDFIntroduction And Aim: Purpurin, a naturally occurring anthraquinone isolated from the roots of Rubia cordifolia, exhibits anti-cancer, anti-genotoxic, anti-microbial, neuromodulatory and photodynamic activity. However, purpurin's in vivo and in vitro antioxidant mechanism remains unexplored. The present study explores the anti-oxidative mechanism of purpurin under the influence of alcohol using in vivo and in vitro test systems.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Res
December 2022
Autophagy and telomere maintenance are two cellular survival processes that show a strong correlation during human ageing and cancer growth, however, their causal relationship remains unclear. In this study, using an unbiased transcriptomics approach, we uncover a novel role of autophagy genes in regulating telomere extension and maintenance pathways. Concomitantly, the pharmacological inhibition of ULK1 (Unc-51 like autophagy activating kinase 1) attenuated human telomerase reverse transcriptase (hTERT) gene expression and telomerase activity in HepG2 cells.
View Article and Find Full Text PDF