We develop the concept of frequency dependent effective mass, M[over ](omega), of jammed granular materials which occupy a rigid cavity to a filling fraction of 48%, the remaining volume being air of normal room condition or controlled humidity. The dominant features of M[over ](omega) provide signatures of the dissipation of acoustic modes, elasticity, and aging effects in the granular medium. We perform humidity controlled experiments and interpret the data in terms of a continuum model and a "trap" model of thermally activated capillary bridges at the contact points.
View Article and Find Full Text PDF