Design of undergraduate laboratory courses that provide meaningful research-based experiences enhance undergraduate curricula and prepare future graduate students for research careers. In this article, a Course-based Undergraduate Research Experience (CURE) laboratory module was designed for upper-division undergraduate biochemistry and chemistry students. The laboratory module enabled students to build upon recently published data in the literature to decipher atomistic insight for an essential protein-protein interaction in human biology through the use of biomolecular NMR spectroscopy.
View Article and Find Full Text PDFGrb14, a member of the Grb7-10-14 family of cytoplasmic adaptor proteins, is a tissue-specific negative regulator of insulin signaling. Grb7-10-14 contain several signaling modules, including a Ras-associating (RA) domain, a pleckstrin-homology (PH) domain, a family-specific BPS (between PH and SH2) region, and a C-terminal Src-homology-2 (SH2) domain. We showed previously that the RA and PH domains, along with the BPS region and SH2 domain, are necessary for downregulation of insulin signaling.
View Article and Find Full Text PDFWiley Interdiscip Rev RNA
March 2012
The control of messenger RNA (mRNA) translation and degradation is important in regulation of eukaryotic gene expression. In the general and specialized mRNA decay pathways which involve 5(') →3(') decay, decapping is the central step because it is the controlling gate preceding the actual degradation of mRNA and is a site of numerous control inputs. Removal of the cap structure is catalyzed by a decapping holoenzyme composed of the catalytic Dcp2 subunit and the coactivator Dcp1.
View Article and Find Full Text PDFThe diffusible signal factor (DSF)-dependent quorum sensing (QS) system adopts a novel protein-protein interaction mechanism to autoregulate the production of signal DSF. Here, we present the crystal structures of DSF synthase RpfF and its complex with the REC domain of sensor protein RpfC. RpfF is structurally similarity to the members of the crotonase superfamily and contains an N-terminal α/β spiral core domain and a C-terminal α-helical region.
View Article and Find Full Text PDFThe chaperonins, GroEL and GroES, are present ubiquitously and provide a paradigm in the understanding of assisted protein folding. Due to its essentiality of function, GroEL exhibits high sequence conservation across species. Complete genome sequencing has shown the occurrence of duplicate or multiple copies of groEL genes in bacteria such as Mycobacterium tuberculosis and Corynebacterium glutamicum.
View Article and Find Full Text PDFChorismate mutase catalyzes the first committed step toward the biosynthesis of the aromatic amino acids, phenylalanine and tyrosine. While this biosynthetic pathway exists exclusively in the cell cytoplasm, the Mycobacterium tuberculosis enzyme has been shown to be secreted into the extracellular medium. The secretory nature of the enzyme and its existence in M.
View Article and Find Full Text PDFActa Crystallogr Sect F Struct Biol Cryst Commun
May 2005
Chorismate mutase catalyzes the first committed step in the biosynthesis of the aromatic amino acids phenylalanine and tyrosine in bacteria, fungi and higher plants. The recent re-annotation of the Mycobacterium tuberculosis genome has revealed the presence of a duplicate set of genes coding for chorismate mutase. The mycobacterial gene Rv1885c bears <20% sequence homology to other bacterial chorismate mutases, thus serving as a potential target for the development of inhibitors specific to the pathogen.
View Article and Find Full Text PDFThe ubiquitously occurring chaperonins consist of a large tetradecameric Chaperonin-60, forming a cylindrical assembly, and a smaller heptameric Chaperonin-10. For a functional protein folding cycle, Chaperonin-10 caps the cylindrical Chaperonin-60 from one end forming an asymmetric complex. The oligomeric assembly of Chaperonin-10 is known to be highly plastic in nature.
View Article and Find Full Text PDFHeat shock proteins (Hsps), also known as molecular chaperones, are a diverse set of proteins that mediate the correct folding, assembly, transport and degradation of other proteins. In addition, Hsps have been shown to play a variety of important roles in immunity, thereby representing prominent antigens in the humoral and cellular immune response. Chaperonins form a sub-group of molecular chaperones that are found in all domains of life.
View Article and Find Full Text PDFChaperonin 60s are a ubiquitous class of proteins that promote folding and assembly of other cellular polypeptides in an ATP-dependent manner. The oligomeric state of chaperonin 60s has been shown to be crucial to their role as molecular chaperones. Chaperonin 60s are also known to be important stimulators of the immune system.
View Article and Find Full Text PDFChaperonin-60s are large double ring oligomeric proteins with a central cavity where unfolded polypeptides undergo productive folding. In conjunction with their co-chaperonin, Chaperonin-60s bind non-native polypeptides and facilitate their refolding in an ATP-dependent manner. The ATPase activity of Chaperonin-60 is tightly regulated by the 10 kDa co-chaperonin.
View Article and Find Full Text PDFOur abilities to predict three-dimensional conformation of a polypeptide, given its amino acid sequence, remain limited despite advances in structure analysis. Analysis of structures and sequences of protein families with similar secondary structural elements, but varying topologies, might help in addressing this problem. We have studied the small beta-barrel class of proteins characterized by four strands (n = 4) and a shear number of 8 (S = 8) to understand the principles of barrel formation.
View Article and Find Full Text PDF