Publications by authors named "Rohan Pooniwala"

In machine learning for image-based medical diagnostics, supervised convolutional neural networks are typically trained with large and expertly annotated datasets obtained using high-resolution imaging systems. Moreover, the network's performance can degrade substantially when applied to a dataset with a different distribution. Here, we show that adversarial learning can be used to develop high-performing networks trained on unannotated medical images of varying image quality.

View Article and Find Full Text PDF

Staff competency is a crucial component of the in vitro fertilization (IVF) laboratory quality management system because it impacts clinical outcomes and informs the key performance indicators (KPIs) used to continuously monitor and assess culture conditions. Contemporary quality control and assurance in the IVF lab can be automated (collect, store, retrieve, and analyze), to elevate quality control and assurance beyond the cursory monthly review. Here we demonstrate that statistical KPI monitoring systems for individual embryologist performance and culture conditions can be detected by artificial intelligence systems to provide systemic, early detection of adverse outcomes, and identify clinically relevant shifts in pregnancy rates, providing critical validation for two statistical process controls proposed in the Vienna Consensus Document; intracytoplasmic sperm injection (ICSI) fertilization rate and day 3 embryo quality.

View Article and Find Full Text PDF

A critical factor that influences the success of an in-vitro fertilization (IVF) treatment cycle is the quality of the transferred embryo. Embryo morphology assessments, conventionally performed through manual microscopic analysis suffer from disparities in practice, selection criteria, and subjectivity due to the experience of the embryologist. Convolutional neural networks (CNNs) are powerful, promising algorithms with significant potential for accurate classifications across many object categories.

View Article and Find Full Text PDF

Deep learning in in vitro fertilization is currently being evaluated in the development of assistive tools for the determination of transfer order and implantation potential using time-lapse data collected through expensive imaging hardware. Assistive tools and algorithms that can work with static images, however, can help in improving the access to care by enabling their use with images acquired from traditional microscopes that are available to virtually all fertility centers. Here, we evaluated the use of a deep convolutional neural network (CNN), trained using single timepoint images of embryos collected at 113 hr post-insemination, in embryo selection amongst 97 clinical patient cohorts (742 embryos) and observed an accuracy of 90% in choosing the highest quality embryo available.

View Article and Find Full Text PDF

Objective: To evaluate the consistency and objectivity of deep neural networks in embryo scoring and making disposition decisions for biopsy and cryopreservation in comparison to grading by highly trained embryologists.

Design: Prospective double-blind study using retrospective data.

Setting: U.

View Article and Find Full Text PDF

Embryo assessment and selection is a critical step in an in vitro fertilization (IVF) procedure. Current embryo assessment approaches such as manual microscopy analysis done by embryologists or semi-automated time-lapse imaging systems are highly subjective, time-consuming, or expensive. Availability of cost-effective and easy-to-use hardware and software for embryo image data acquisition and analysis can significantly empower embryologists towards more efficient clinical decisions both in resource-limited and resource-rich settings.

View Article and Find Full Text PDF