Background: The association between organizing pneumonia (OP) after lung transplantation with the development of acute rejection (AR) remains undefined. In addition, molecular allograft injury, as measured by donor-derived cell-free DNA (dd-cfDNA), during episodes of OP and its relationship to episodes of AR, chronic lung allograft dysfunction (CLAD), or death is unknown.
Methods: This multicenter, prospective cohort study collected serial plasma samples from 188 lung transplant recipients for dd-cfDNA at the time of bronchoscopy with biopsy.
Multisystem inflammatory syndrome in children (MIS-C) is a rare but life-threatening hyperinflammatory condition induced by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes pediatric COVID-19 (pCOVID-19). The relationship of the systemic tissue injury to the pathophysiology of MIS-C is poorly defined. We leveraged the high sensitivity of epigenomics analyses of plasma cell-free DNA (cfDNA) and plasma cytokine measurements to identify the spectrum of tissue injury and glean mechanistic insights.
View Article and Find Full Text PDFPlasma donor-derived cell-free DNA (dd-cfDNA) is a sensitive biomarker for the diagnosis of acute rejection in lung transplant recipients; however, differences in dd-cfDNA levels between single and double lung transplant remains unknown. We performed an observational analysis that included 221 patients from two prospective cohort studies who had serial measurements of plasma dd-cfDNA at the time of bronchoscopy and pulmonary function testing, and compared dd-cfDNA between single and double lung transplant recipients across a range of disease states. Levels of dd-cfDNA were lower for single vs.
View Article and Find Full Text PDFInjured peripheral nerves typically exhibit unsatisfactory and incomplete functional outcomes, and there are no clinically approved therapies for improving regeneration. Post-operative electrical stimulation (ES) increases axon regrowth, but practical challenges from the cost of extended operating room time to the risks and pitfalls associated with transcutaneous wire placement have prevented broad clinical adoption. This study presents a possible solution in the form of advanced bioresorbable materials for thin, flexible, wireless implant that provides precisely controlled ES of the injured nerve for a brief time in the immediate post-operative period.
View Article and Find Full Text PDF